Παρασκευή 30 Αυγούστου 2013

Η Θεωρία του Χάους: Σύντομη Διαδρομή και Πνευματικά Διδάγματα



Πετάμε με το αεροπλάνο
, η πτήση κυλάει ομαλά, οι αεροσυνοδοί σερβίρουν ποτά στους επιβάτες, όταν ξαφνικά το αεροπλάνο αρχίζει να κλυδωνίζεται, να γέρνει μια στα δεξιά, μια στα αριστερά, οι επιβάτες να νοιώθουν σαν να πέφτουν στο κενό κι πάλι να σφίγγονται στο κάθισμά τους. Ο πιλότος αναγγέλλει πως περνάμε από ένα σημείο στροβίλων στην ατμόσφαιρα, το οποίο όμως θα ξεπεράσουμε σε λίγο, αλλά για την ασφάλειά τους οι επιβάτες παρακαλούνται να φορέσουν τις ζώνες ασφαλείας τους.


Στο σημείο του αιθέρα που διασχίζει το αεροπλάνο, κυριαρχεί χάος στα ατμοσφαιρικά ρεύματα, φαινόμενο φυσικό...

Σε πολλές περιπτώσεις στην καθημερινή μας ζω
ή, ερχόμαστε αντιμέτωποι με το χάος στην επιστημονική του έννοια: ο καπνός που ανεβαίνει ομαλά στον αέρα και ξαφνικά διασκορπίζεται ραγδαία, η βρύση που στάζει κανονικά, σταγόνα με τη σταγόνα, έπειτα μια παύση, μετά δυο-δυο οι σταγόνες κοντά-κοντά, και πάλι ξανά στον αρχικό τους ρυθμό. Το ταξίδι στον αυτοκινητόδρομο με τα ανεξήγητα μποτιλιαρίσματα. Οι ανεξήγητες διακυμάνσεις των δεικτών στο χρηματιστήριο. Οι ανεξήγητες συγκυρίες που οδηγούν έθνη και λαούς σε πόλεμο ... 

Όλα αυτά μπορούν να εξηγηθούν μέσω της θεωρίας του χάους. Το χάος ανήκει στην καθημερινότητά μας.

Προτού όμως προχωρήσουμε στην περιγραφή της θεωρίας του χάους, ας προσπαθήσουμε να ορίσουμε την έννοια του. Στην αρχαιότητα το χάος αποτελούσε το πρώτο στοιχείο της κοσμογονίας, ύλη εν είδει νεφέλης και σκότους. Σήμερα συνδέουμε με το χάος πλήρη σύγχυση και αταξία. Στη φυσική το χάος συνδέεται με μη προβλεπτικότητα και έλλειψη πληροφορίας.



Ιστορική αναδρομή και εξελίξεις
Για πολύ καιρό εκεί που επικρατούσε το χάος η κλασική επιστήμη δεν είχε τρόπους εξήγησης και αντιμετώπισής του. Οι επιστήμονες ζούσαν με την άγνοια του ανεξήγητου, δηλαδή της αταξίας που κυριαρχεί στα ατμοσφαιρικά ρεύματα, στους στροβίλους της θάλασσας, ακόμη και στις διακυμάνσεις των ζωικών πληθυσμών. Η ανώμαλη, ασταθής, ασυνεχής πλευρά της φύσης προκαλούσε από παλιά αινίγματα στην επιστήμη.

Φυσική
Το 1963, ο Edward Lorenz, μετεωρολόγος στο Ινστιτούτο Τεχνολογίας της Μασσαχουσέτης (ΜΙΤ), δημοσίευσε ένα πρωτοποριακό άρθρο [1] που κατέληγε στη διαπίστωση ότι " ... όσον αφορά την πρόβλεψη του καιρού σε ένα αρκετά μακρυνό μέλλον, αυτό είναι εντελώς αδύνατο ...". 

Ο Lorenz χρησιμοποίησε μαθηματικά μοντέλα και προσομοιώσεις της ροής μορίων στην ατμόσφαιρα για να καταλήξει στο συμπέρασμα ότι η μακρόχρονη πρόβλεψη του καιρού σε παγκόσμια κλίμακα είναι αδύνατη, λόγω του ότι το αντικείμενο, δηλαδή οι καιρικές συνθήκες, αποτελεί σύστημα αρκετά πολύπλοκο.

Όμως οι έρευνες του Lorenz έδωσαν την αφορμή για τη δημιουργία μιας έννοιας που αργότερα θα γινόταν παγκοσμίως γνωστή σαν το "φαινόμενο της πεταλούδας". Το απαλό φτερούγισμά της στο Πεκίνο αρκεί για να επιφέρει συνθήκες θύελλας στη Νέα Υόρκη λίγες μέρες αργότερα. 

Αρκεί δηλαδή μια μικρή παρέκκλιση στις αρχικές συνθήκες ενός πολύπλοκου συστήματος, όπως το μετεωρολογικό σύστημα, ώστε να επέλθει το "χάος".

Η μεταφορική αυτή έννοια του "φαινομένου της πεταλούδας" εκφράζει κάτι που θεωρείται χαρακτηριστικό απλών αλλά ιδιαίτερα πολυσύνθετων χαοτικών συστημάτων: την ευαίσθητη εξάρτησή τους από τις αρχικές συνθήκες. Η χαώδης συμπεριφορά συνδέεται με συστήματα "διασκεδασμού" όπως τα ονομάζουν οι φυσικοί, δηλαδή συστήματα στα οποία παρατηρούνται απώλειες λόγω τριβής, όπως για παράδειγμα η ροή του νερού μέσα σ' έναν σωλήνα ή ο δίσκος του χόκεϊ επί πάγου καθώς αυτός κινείται στην επιφάνεια του. 

Τέτοια συστήματα και η συμπεριφορά τους περιγράφονται μαθηματικά μέσω μη γραμμικών εξισώσεων. Τέτοιες εξισώσεις θεωρούνται όμως δύσκολες και σε πολλές περιπτώσεις δεν είναι ολοκληρώσιμες, λύνονται δηλαδή μόνο αριθμητικά και με τη βοήθεια ηλεκτρονικών υπολογιστών. Αυτός είναι ένας από τους κύριους λόγους που πολλοί φυσικοί και μαθηματικοί δεν έδιναν μέχρι πρότινος πολλή προσοχή στην περιγραφή τέτοιων φαινομένων. 

Χαώδη συστήματα που αφενός ακολουθούν τους νόμους της κλασικής μηχανικής, αφ' ετέρου περιγράφονται μέσω μη γραμμικών εξισώσεων, δείχνουν μια παράδοξη συμπεριφορά: είναι αιτιοκρατικά (αιτιοκρατία σημαίνει ότι ένα σύστημα κυβερνάται από τους φυσικούς νόμους κατά τέτοιον τρόπο ώστε πάντοτε η ίδια αιτία να φέρνει το ίδιο (προβλεπόμενο) αποτέλεσμα), μακροπρόθεσμα όμως τα χαρακτηρίζει η μη προβλεπτικότητα.
Βιολογία
Το 1975 ο βιολόγος Robert May δημοσίευσε στο επιστημονικό περιοδικό Nature ένα άρθρο στο οποίο οι έννοιες της θεωρίας του χάους έβρισκαν την εφαρμογή τους για την εξήγηση της αύξησης βιολογικών πληθυσμών [2]. Ο τρόπος προσέγγισης του May προκάλεσε πολλούς βιολόγους να δουν από διαφορετική σκοπιά το θέμα της αύξησης βιολογικών πληθυσμών. 

Μέχρι τότε εξηγούσαν τον τρόπο αύξησης, π.χ. του αριθμού των ελαφιών στα δάση ορισμένων περιοχών, με τα συνηθισμένα μαθηματικά μοντέλα, τα οποία όμως παρουσίαζαν σφάλματα που οι βιολόγοι τα απέδιδαν στις επιδράσεις μετεωρολογικών ή επιδημικών παραγόντων. Ο May όμως μπόρεσε να δείξει ότι τέτοιου είδους "σφάλματα" μπορούσαν να ενσωματωθούν στα μαθηματικά μοντέλα και να οδηγήσουν σε ασφαλέστερα συμπεράσματα.

Το συμπτωματικό γεγονός ότι ο May είχε πτυχίο και στη θεωρητική φυσική είναι χαρακτηριστικό για τον νέο τρόπο προσέγγισης που απαιτείται σήμερα όλο και περισσότερο στην έρευνα. Τα θέματα με τα οποία ασχολείται η επιστήμη σήμερα προϋποθέτουν πλατειά εκπαίδευση και ευρύ πνεύμα.

Χημεία
Την δεκαετία του '60 και '70, νέες ανακαλύψεις στη χημεία, τη θερμοδυναμική και τα μαθηματικά σηματοδότησαν μια αλλαγή σκέψης προς την κατεύθυνση της έρευνας του χάους. 

Όλως σημαντική ήταν η έρευνα του βέλγου φυσικού, ρώσικης καταγωγής, Ilya Prigogine, ο οποίος το 1977 τιμήθηκε με το βραβείο Νομπέλ χημείας για την έρευνά του στον τομέα της θερμοδυναμικής της μη ισορροπίας. 

Σ' ένα πρόσφατό του έργο [3] ο Prigogine, επισημαίνει ότι οι ιδέες του χάους, της μη αντιστροφής του χρόνου και των συστημάτων διασκεδασμού αλληλοσυνδέονται και μπορούν να οδηγήσουν σε μια νέα πιο ρεαλιστική θεώρηση του φυσικού κόσμου. Με ένα απλό παράδειγμα δείχνει ότι η αύξηση της εντροπίας δεν συνδέεται αποκλειστικά με την αταξία ενός συστήματος, αλλά μπορεί να οδηγήσει σε νέες μορφές τάξης και οργάνωσης.
Μαθηματικά
Την δεκαετία του '70 ο γάλλος φυσικομαθηματικός, Benoit Mandelbrot, που δούλευε στο ερευνητικό κέντρο της εταιρίας ΙΒΜ, πρωτοπόρευσε σ' έναν τότε νέο τομέα των μαθηματικών που έγινε γνωστός ως γεωμετρία των φράκταλ

Μπορούμε να πούμε πως ο Mandelbrot και άλλοι, δημιούργησαν έναν νέο τύπο γεωμετρίας που περιγράφει ακριβέστερα από την κλασική, ευκλίδεια γεωμετρία την πολυπλοκότητα που συναντάμε στη φύση (όπως είναι οι ακτογραμμές, τα σχήματα χιονοστοιβάδων, σύννεφων, αστραπών, θραύσεων σε μέταλλα και κρύσταλλα).

Τα πιο γνωστά φράκταλ είναι αυτά που συσχετίζονται με το σύνολο Mandelbrot, το οποίο περιγράφεται με μια επαναλαμβανόμενη τετραγωνική εξίσωση στο μιγαδικό χώρο, τύπου:


Zn+1 = Zn2 + c c, z e C

Στο σύνολο Mandelbrot περιλαμβάνονται όλες οι συναρτήσεις μιγαδικών αριθμών z που παραμένουν πεπερασμένες. Οι παρατηρήσεις μέσω υπολογιστή δείχνουν ότι στο σύνορο του συνόλου του βρίσκεται ένα περίπλοκο φράκταλ με ένα πλήθος από αναδιπλώσεις και εσωτερικές συσπειρώσεις που παρουσιάζουν αυτο-ομοιότητα.

Το γεγονός ότι δεν μπόρεσε να διατυπωθεί νωρίτερα μια τέτοιου είδους γεωμετρία οφείλεται, στις μέχρι τότε ανύπαρκτες υπολογιστικές ικανότητες [4].


Σημασία
Οι πιο ένθερμοι υποστηρικτές της καινούργιας θεωρίας δηλώνουν ότι η επιστήμη του 20ού αιώνα χαρακτηρίζεται από τρείς κύριες επαναστατικές επιτεύξεις: 
- τη θεωρία της σχετικ και 
- τη θεωρία του χάους.ότητας, 
- την κβαντική μηχανική

Αν η θεωρία της σχετικότητας έδωσε τέλος στην νευτωνική αντίληψη ενός απεριόριστου χώρου και χρόνου, και η κβαντική θεωρία έδωσε τέλος στο νευτωνικό όνειρο μιας αντικειμενικής προσέγγισης στη φύση, η θεωρία του χάους δίνει μια για πάντα τέλος στην ουτοπία του Laplace, περί αιτιοκρατικής προβλεπτικότητας.



Το τέλος της βεβαιότητας
Η θεωρία του χάους οδηγεί σε μια νέα, ολιστική αντίληψη της φύσης που περιλαμβάνει φαινόμενα που αγνοούνταν ή παραβλέπονταν από την κλασική προσέγγιση. Ο Prigogine το διατυπώνει αυτό ως εξής: ''Η κλασική επιστήμη έδινε έμφαση στην ισορροπία και στη σταθερότητα. Σήμερα η προσοχή μας στρέφεται στις διάφορες μεταβολές, στην εξέλιξη, στην αστάθεια.
Ακριβέστερα, στην κλασική φυσική δινόταν η αίσθηση ότι ζούσαμε σ' ένα μέλλον αντιστρέψιμο. Ο ντετερμινισμός υποσχόταν ότι γνωρίζοντας τις αρχικές συνθήκες θα ήταν σε θέση να προβλέπει κάθε μελλοντική κατάσταση. Το Σύμπαν μας όμως δεν είναι έτσι[5].

Το τέλος του αιτιοκρατισμού (ντετερμινισμού), είχε ήδη αναγγελθεί από τους επιστήμονες που πρωτοπόρησαν στη θεμελίωση της κβαντικής θεωρίας. Πολλοί ήταν εκείνοι όμως που εξακολουθούσαν να πιστεύουν ότι, αν και δεν ίσχυε ο αιτιοκρατισμός στο επίπεδο μεμονωμένων ατόμων, στο σύνολό τους όμως, δηλαδή στα πλαίσια στατιστικών νόμων, αυτά συμπεριφέρονται αιτιοκρατικά. 

Με τη θεωρία του χάους, η πρόβλεψη της συμπεριφοράς ενός συστήματος παύει να έχει νόημα και συνεπώς δεν έχει νόημα και η έννοια του αιτιοκρατισμού. Ακόμα και στα πιο απλά συστήματα μπορεί να επικρατήσει το χάος. Αυτά θεωρούνται πολύ ευαίσθητα ως προς τις αρχικές τους συνθήκες και η συμπεριφορά τους δεν μπορεί να προβλεφθεί.

Μια για πάντα λοιπόν, το αιτιοκρατικό όνειρο του Laplace, ότι δηλαδή ο άνθρωπος θα ήταν σε θέση να προβλέψει συνθήκες στον κόσμο του μέλλοντος, έχει διαψευστεί.

Τα όρια της επιστήμης
Το τέλος του ονείρου της απεριόριστης πρόβλεψης του κόσμου δείχνει επίσης πως η επιστήμη, καθώς και η επιστημονική θεώρηση του κόσμου γενικά, φθάνει στα όριά της. Η θεωρία του χάους επισφραγίζει το γεγονός αυτό και επιπλέον ωθεί τον επιστήμονα να υιοθετήσει μια στάση "ταπεινοφροσύνης", επειδή διαπιστώνει πως με μια εξήγηση που δίνει η επιστήμη εμφανίζονται νέα αινίγματα που απαιτούν λύση.

Όσο κι αν εισχωρήσει στη δομή της ύλης, διασπώντας την σε άτομα, "στοιχειώδη" σωματίδια κλπ., και ερευνώντας τις δυνάμεις που την συγκρατούν, εκείνη θα εμφανίζεται όλο πιο πολύπλοκη και μυστηριώδης.

Η θεωρία του χάους δίνει μια νέα ώθηση στην εξερεύνηση της πολυπλοκότητας και φαινομενολογικής ασάφειας που συναντάμε στη φύση. Και η έρευνά της καλεί σε κοινή προσπάθεια όλων των επιστημονικών κλάδων και στη συμμετοχή διαφόρων ειδικοτήτων. Βασικές μέθοδοι των μαθηματικών και της φυσικής βρίσκουν την εφαρμογή τους τόσο σε άλλους κλάδους, όσο και αμφίδρομα, ο τρόπος σκέψης που επικρατεί στους άλλους κλάδους εισχωρεί και επηρεάζει την έρευνα στον κλάδο των μαθηματικών και της φυσικής.

Η συνεργασία αυτή και η προσπάθεια από κοινού για τη λύση δια-κλαδικών προβλημάτων στην επιστήμη, θεωρούνται σήμερα επιτακτικές και η έλλειψή τους στο παρελθόν ήταν το αποτέλεσμα μιας αυθαίρετα απλουστευτικής αντίληψης των πραγμάτων.



Τα μειονεκτήματα μιας απλουστευτικής σκέψης
Είναι γεγονός ότι δεν μπορούμε να ερευνήσουμε το όλον μόνο με το να ερευνάμε τα μέρη που το αποτελούν. Καθώς οι επιστήμονες ανακαλύπτουν την πολυπλοκότητα που επικρατεί ακόμα και στα πιο απλά συστήματα στη φύση και την αβεβαιότητα πρόβλεψης της συμπεριφοράς τους, αρχίζουν να συνειδητοποιούν το γεγονός ότι όλο το φάσμα της φυσικής πραγματικότητας δεν μπορεί να εξηγηθεί μόνο με τις αλληλεπιδράσεις μορίων, ατόμων ή και στοιχειωδών σωματιδίων. Όπως είναι εξίσου δύσκολο να κατανοηθεί ο βιολογικός κόσμος με βάση μόνο τη φυσική και τη χημεία.

Τι λοιπόν; Εφ' όσον δεν μπορούμε να εξηγήσουμε τη φύση στο σύνολό της μέσω της επιστήμης, δεν θα ήταν σοφό να προβλέπαμε την πιθανότητα του ανεξήγητου, δηλαδή τη δράση του Θεού στη φύση;

Τέτοια σκέψη όμως, όσο δικαιολογημένη και να μας φαίνεται, οδηγεί σε λανθασμένα συμπεράσματα, ότι δηλαδή ο Θεός είναι ένας θεός που υπάρχει μόνο εκεί που η σκέψη μας δεν μπορεί να εισχωρήσει ή που δεν βρίσκει άλλη δυνατότητα εξήγησης, θεός του κενού δηλαδή. 

Η Αγία Γραφή διδάσκει πως όσο ο Θεός υπερβαίνει τη φύση που δημιούργησε, τόσο ταυτίζεται μ' αυτήν, τόσο και συνυπάρχει μαζί της. Η θεία υπεροχή φανερώνεται ιδιαίτερα σε στιγμές που ο άνθρωπος, το δημιούργημά του, τον αρνείται, τον απομακρύνει από τη σκέψη του και κατόπιν μόνος του αναγνωρίζει την αδυναμία του και την ανικανότητά του απέναντι στο μεγαλείο πού συναντάει στη φύση.


Πνευματικά διδάγματα
Η πείρα μας διδάσκει πως η ζωή δεν κυλάει πάντοτε αρμονικά. Μερικοί προσπαθούν να ζήσουν τη ζωή τους όσο πιο ομαλά γίνεται. Δεν επιτρέπουν στη ζωή τους να εξελιχτεί, είτε επειδή είναι μεμψίμοιροι και δεν θέλουν να ζήσουν τη ζωή τους με όλες τις δυνατότητες που τους προσφέρονται, είτε επειδή φοβούνται το ρίσκο, είτε επειδή βλέπουν τη ζωή μονόπλευρα χάνοντας έτσι τις υπόλοιπες διαστάσεις της.

Επιλέγουν για παράδειγμα τον ασκητισμό χάρη πνευματικών ιδανικών ή ζουν τα πάθη τους και στις απολαύσεις της ζωής για χάρη ηδονιστικών σκοπών, παραβλέποντας έτσι τις ψυχικές τους ανάγκες. Η ζωή γι' αυτούς μπορεί να κυλάει κανονικά, χωρίς πολλά απρόοπτα και χωρίς πολλές διαταράξεις.

Άλλοι προσπαθούν να εκμεταλλευτούν τις ευκαιρίες που τους παρέχει η ζωή στο ακέραιο. Γι' αυτούς ίσως η ζωή να κυλάει με διακυμάνσεις, και πολλές φορές με χαώδη τρόπο.



Ο Ιησούς υπεράνω των χαοτικών καταστάσεων
Σε όποια κατηγορία ανθρώπων και να ανήκουμε, ποιος μπορεί να μας εγγυηθεί ότι στη ζωή μας, δεν θα πειραματισθούμε και στιγμές χάους; Το ερώτημα που προκύπτει είναι: Είναι άραγε η ζωή μας σε θέση να αντέξει στο χάος; Υπάρχει μια όμορφη περιγραφή στα Ευαγγέλια, όπου οι μαθητές κι ο Χριστός μπαίνουν σε μια βάρκα για να πάνε στην άλλη όχθη της λίμνης. 

Στη μέση του δρόμου συναντάνε κακοκαιρία και τα φουρτουνιασμένα νερά απειλούν να βουλιάξουν τη βάρκα. Αλλά ο Ιησούς κοιμάται. Στην απελπισία τους οι μαθητές τον ξυπνούν και του ζητούν βοήθεια. Εκείνος, στην παντοδυναμία του, αμέσως ησυχάζει τα νερά. Χαρακτηριστικό είναι το γεγονός ότι εκείνος τους αποκαλεί ολιγόπιστους, γιατί; Δεν τους ονομάζει ολιγόπιστους επειδή τον κάλεσαν να βοηθήσει, αλλά επειδή δεν πίστεψαν ότι εφ' όσον εκείνος βρίσκεται μαζί τους στη βάρκα, η πορεία τους - έστω και κάτω από σε συνθήκες χάους - θα είναι ασφαλής.


Οδυνηρές απλοποιήσεις
Είδαμε πιο πάνω πως είναι σοβαρό σφάλμα να ακολουθούμε μια απλουστευτική στάση, είτε με το να υπερ-απλοποιούμε και να γενικεύουμε ανεπίτρεπτα τα πράγματα, είτε με το να μη λαβαίνουμε υπόψη ότι πολλές έννοιες, δεν είναι ανεξάρτητες, αλλά αλληλοσυνδέονται και υπόκεινται σε αλληλεπιδράσεις.

Τι μπορεί να είναι τέτοιου είδους απλοποιήσεις; Π.χ. ότι ο άνθρωπος είναι απλώς ένα όν υλικό/βιολογικό κι ότι αρκεί να έχει όλα τα υλικά είδη που επιθυμεί, χωρίς να δίνει σημασία πώς τρέφεται η ψυχή του. Έναν τρόπο υπερ-απλοποίησης τον συναντάμε συχνά στον θεολογικό τομέα. Η υπέρ-απλουστευμένη θεολογία οδηγεί σε απλοϊκή πίστη. Το κύριο χαρακτηριστικό της είναι κανόνες και εντολές που προτιμούνται από την αγάπη και τον σεβασμό προς τον άλλο.
Βιβλιογραφία
[1] Edward Ν. Lorenz, Deterministic nonperiodic flow, Journal of the Atmospheric Sciences 20 (1963) 130-141
[2] Robert Μ. May, Simple mathematical models with very cοmplicated dynamics, Nature 261 (1976) 459-467
[3] Ilya Prigogine, Isabelle Stengers, The end of certainty: time, chaos and the new laws of nature, Free Press, New York, 1997
[4] James G1eick, Chaos. The making of a new science, Sphere, London 1988
[5] Ραντεβού μ' ένα Νομπέλ. Ο Ιλιά Πριγκοζίν και το χάος. Το Βήμα, 8.12.1996, σελ. 4



Πέμπτη 29 Αυγούστου 2013

Οι πρωτοπόροι της Κβαντικής Θεωρίας



planckΜ.Planck
 Βραβείο Nobel 1918 για την ανακάλυψη του κβάντου δράσης.
nbohrΝ.Bohr
Βραβείο Nobel 1922 για τη μελέ-τη της δομής των ατόμων και της ακτινοβολίας τους.
bohm
D.Bohm
Σπάνιος συνδυ-ασμός θεωρη-τικού φυσικού και μυστικιστή. Η Αιτιότητα και Τύ-χη στη Σύγχρονη Φυσική, αποτελεί έργο σταθμός στην Κβαντική Φυσική.
born
Μ.Born
Βραβείο Nobel 1954 για το θεμε-λιακό έργο του στην κβαντική μηχανική και ιδιαίτερα στην στατιστική ερμηνεία της κυματοσυνάρτησης.
boseBose
Διατύπωσε μαζί με τον Einstein τη  στατιστική για τα σωματίδια με ακέραιο σπιν.
broglieL.Broglie
Βραβείο Nobel 1929 για την ανακάλυψη της κυματικής φύσης του ηλεκτρονίου.


debyeP. Debye
Βραβείο Nobel Χημείας 1936 για τα πολικά μόρια και την έρευνα στα διαλύματα.
diracP.Dirac
Βραβείο Nobel 1933 για την ανακάλυψη νέων και παραγω-γικών μορφών της ατομικής θεω-ρίας.
ehrenfest
P.Ehrenfest
Διατύπωσε μια αρχή και ένα θεώρημα στην στατιστική μηχανική και την κβαντομη-χανική που φέ-ρουν το όνομα του.
einstein4
Α.Einstein
Βραβείο Nobel 1921 για τα επιτεύ-γματά του στην ερμηνεία του φωτοηλεκτρικού φαινομένου.


Gamow
Gamow
Ερμήνευσε την ακτινοβολία α, πρότεινε για τους πυρήνες το πρό-τυπο της υγρής σταγόνας, θεμε-λιωτής της σύγ-χρονης βιολο-γίας.
goudsmith
S.Goudsmith
Βρήκε το spin του ηλεκτρονίου



















heisenberg
W.Heisenberg
Βραβείο Nobel 1932 για τη συμβολή του στην θεμελίωση της κβαντομη-χανικής και στην ανακάλυψη των αλλοτροπικών μορφών του Υδρογόνου.
pauli
W.Pauli
Βραβείο Nobel 1945 για την ανα-κάλυψη ης απα-γορευτικής αρ-χής που φέρει το όνομα του.
purcell
Ε.Purcell
Βραβείο Nobel φυσικής 1952 για την ανά-πτυξη μεθόδων μετρήσεων του πυρηνικού μα-γνητισμού.
schroed
E. Schroedinger
Βραβείο Nobel 1933 για την ανακάλυψη νέων και παραγωγικών μορφών της ατο-μικής θεωρίας.
sommerfeld
Α. Sommerfeld
Πρωτοπόρος της κβαντικής φυσι-κής, συγγραφέας του έργου "Ατο-μική δομή και φασματικές γραμμές". Χρησιμοποίησε πρώτος τις φασματικές γραμμές στην έρευνα της ύλης.
wigner
Ε.Wigner
Βραβείο Nobel 1963 για την συμβολή του στη θεωρία των στοιχειωδών σωματιδίων και στην ανακάλυψη και εφαρμογή των θεμελιακών αρχών συμμετρίας.

Γιατί η φύση “επέλεξε” τη κβαντική φυσική, ως μέθοδο συμπεριφοράς;


Ένα από τα αναπάντητα ερωτήματα της φυσικής
 είναι γιατί η φύση «επέλεξε» την κβαντική φυσική ως μέθοδο συμπεριφοράς.


Σε νέα έρευνα του Εθνικού Πανεπιστημίου της Σιγκαπούρης [An information-theoretic principle implies that any discrete physical theory is classical], οι Corsin Pfister και Stephanie Wehner διατυπώνουν μία νέα αρχή που ενδεχομένως να απαντήσει αυτό το ερώτημα.

Γνωρίζουμε ότι τα αντικείμενα
 που ακολουθούν τους κβαντικούς κανόνες, όπως τα άτομα, τα ηλεκτρόνια, ή τα φωτόνια που συνθέτουν το φως, δεν εμφανίζουν πάντα συνηθισμένη συμπεριφορά. 


Για παράδειγμα μπορούν να υπάρχουν σε περισσότερα από ένα σημεία την ίδια στιγμή, ή να αλλάζουν ταυτόχρονα κατάσταση ανεξαρτήτου απόστασης, όπως στο φαινόμενο της κβαντικής σύμπλεξης. Όλα αυτά τα φαινόμενα έχουν επιβεβαιωθεί σε πειράματα, αποδεικνύοντας ότι η θεωρία είναι σωστή. Όμως θα ήταν ακόμα πιο κατανοητά αν μπορούσαμε να αποδείξουμε ότι η ίδια η κβαντική φυσική προέκυψε από κάποιες «διαισθητικές» βασικές αρχές.

Η ειδική θεωρία της σχετικότητας του Αϊνστάιν
 
περιγράφει πώς τίποτα δεν μπορεί να ταξιδέψει γρηγορότερα από το φως. Ωστόσο, αυτό από μόνο του δεν είναι αρκετό για να καθορίσει την κβαντική φυσική ως το μόνο τρόπο συμπεριφοράς για τη φύση. Οι Πφάιστερ (Pfister) και Βένερ (Wehner) πιστεύουν ότι έχουν ανακαλύψει μια νέα χρήσιμη αρχή. «Έχουμε βρει μια αρχή που είναι πολύ αποτελεσματική στο να αποκλείει άλλες πιθανές θεωρίες», δήλωσε ο Πφάιστερ.

Με λίγα λόγια, η αρχή υπαγορεύει ότι αν μια μέτρηση δε δίνει καμία πληροφορία, τότε το σύστημα που μετράται δεν έχει διαταραχθεί.

Οι κβαντικοί φυσικοί δέχονται ότι η απόκτηση πληροφοριών από κβαντικά συστήματα προκαλεί διαταραχή.
 Οι ερευνητές υποστηρίζουν ότι σε έναν λογικό κόσμο, θα ισχύει επίσης το αντίστροφο. Εάν δεν μπορούμε να μάθουμε τίποτα από τη μέτρηση ενός συστήματος, τότε δεν το σύστημα δεν έχει διαταραχθεί.

Η αρχή φέρνει στο μυαλό το περίφημο παράδοξο της γάτας του Σρέντινγκερ,
 ένα υποθετικό πείραμα στο οποίο μια γάτα σε ένα κλειστό κουτί υπάρχει ταυτόχρονα σε δύο καταστάσεις, σε μια αναλογία της κβαντικής υπέρθεσης. Σύμφωνα με την κβαντική θεωρία είναι πιθανό ότι η γάτα είναι και νεκρή και ζωντανή, μέχρι τη στιγμή όπου η κατάσταση της γάτας «μετριέται» από το άνοιγμα του κουτιού.

Όταν το κιβώτιο ανοίξει,
 επιτρέποντας την υγεία της γάτας να μετρηθεί, η υπέρθεση καταρρέει και η γάτα καταλήγει να είναι οριστικά νεκρή ή ζωντανή. Επομένως, η μέτρηση έχει διαταράξει το σύστημα (γάτα), γεγονός το οποίο αποτελεί γενική ιδιότητα των κβαντικών συστημάτων.

Η ερευνητική ομάδα έδειξε
 ότι η αρχή αυτή αποκλείει a priori διάφορες άλλες θεωρίες. Επισημαίνουν συγκεκριμένα ότι μια κατηγορία θεωριών που οι ίδιοι αποκαλούν «διακριτές», είναι ασυμβίβαστες με την αρχή. Οι θεωρίες αυτές υποστηρίζουν ότι τα κβαντικά σωματίδια μπορούν να έχουν μόνο ένα πεπερασμένο αριθμό καταστάσεων, και δεν επιλέγουν από ένα άπειρο, συνεχές εύρος δυνατοτήτων. 

Μία παρόμοια διακριτότητα στο χωροχρόνο, όπου η υφή του σύμπαντος αποτελείται από μικροσκοπικά κομμάτια και δεν είναι μια ομαλή, συνεχής οντότητα, έχει προταθεί και από αρκετές άλλες κβαντικές βαρυτικές θεωρίες.

Οι Πφάιστερ και Βένερ επισημαίνουν ότι ακόμα δεν απαντήθηκε ολοκληρωτικά το μεγάλο ερώτημα, καθώς και άλλες θεωρίες, συμπεριλαμβανομένης της κλασσικής φυσικής, είναι συμβατές με την αρχή που διατύπωσαν. Ωστόσο η έρευνα τους θα δώσει την κατάλληλη ώθηση ώστε στο μέλλον, άλλες παρόμοιες αρχές να αποκλείσουν με τη σειρά τους τις υπόλοιπες θεωρίες πλην της κβαντικής.

Πίσω από τις αρχές της κβαντικής μηχανικής


εικόνα

Εισαγωγή
Το μοντέλο της κβαντομηχανικής καθιερώθηκε επίσημα στο 5ο συνέδριο του Solvay στο Κόμο το 1927. Η αρχή απροσδιοριστίας του Χάϊζενμπεργκ και η αρχή συμπληρωματικότητας του Μπόρ, προσέφεραν οριστικά τη θεμελίωση όλων των μαθηματικών κατασκευών της νέας θεωρίας οι οποίες μπορούσαν να κάνουν πρόβλεψη ορισμένων μεγεθών. 

 Όμως από τότε ειδικό ενδιαφέρον παρουσιάζουν οι απόψεις των φυσικών πάνω σε τρία γενικά επιστημονικά προβλήματαή ή φιλοσοφικά προβλήματα των φυσικών επιστημών, και τα οποία τέθηκαν μετά την ανάπτυξη της κβαντομηχανικής:
Υπάρχουν οι βασικές οντότητες της ατομικής φυσικής , όπως τα ηλεκτρόνια, τα φωτόνια, κ.λ.π., ανεξάρτητα από τις παρατηρήσεις των φυσικών ;

Αν η απάντηση στο προηγούμενο ερώτημα είναι καταφατική, είναι δυνατό να κατανοήσουμε τη δομή και εξέλιξη των ατομικών οντοτήτων και φαινομένων, δημιουργώντας χωροχρονικές εικόνες που ν’αντιστοιχούν στην πραγματική τους υπόσταση ;
Πρέπει οι φυσικοί νόμοι να διαμορφωθούν έτσι ώστε να δίνεται μία ή περισσότερες αιτίες για όλα τα παρατηρούμενα φαινόμενα ;

Τα τρία αυτά ζητήματα εν συνεχεία θα αναφέρονται σαν ερωτήματα με τους εξής τίτλους:
-για την πραγματικότητα
-για την κατανόηση
-για την αιτιοκρατία


Και τα τρία αυτά ζητήματα, δίχασαν την κοινότητα των φυσικών οι οποίοι σε γενικές γραμμές χωρίστηκαν σε δύο στρατόποαιδα ανάλογα με τις απαντήσεις που έδωσαν. Έτσι έχουμε τη θετικιστική και ιντετερμινιστική ερμηνεία των ζητημάτων αυτών όπως την έδωσε η Σχολή της Κοπεγχάγης απαντώντας αρνητικά και στα τρία ερωτήματα. 

Εδώ θα συναντήσουμε τους θεμελιωτές της κβαντομηχανικής, Sommerfeld, Born, Bohr, Pauli, Heisenberg, Dirac, Jordan.

Και την πιο ρεαλιστική και αιτιοκρατική ερμηνεία των ζητημάτων αυτών, όπου το σωματίδιο θεωρείται ότι αλληλεπιδρά είτε μόνο με το μετρητικό όργανο και το μακροφυσικό του γενικά περιβάλλον είτε συγχρόνως και με το μικροφυσικό του περιβάλλον και κάποιες κρυμμένες μεταβλητές του συστήματος (που ονομάστηκαν και λανθάνουσες παράμετροι). 

Στην ομάδα αυτή ανήκουν οι Planck, Ehrenfest, Einstein, Schrödinger, de Broglie οι οποίοι απάντησαν καταφατικά στα ερωτήματα αυτά.


Η Αρχή της Αβεβαιότητας
Μετά την ίδρυση της κβαντομηχανικής το 1925 οι θεωρητικοί φυσικοί ανέπτυξαν εντατικά τόσο τη θεωρία όσο την εφαρμογή της σε νέους τομείς, ενώ συγχρόνως έκαναν μεγάλη προσπάθεια να κατανοήσουν τα εννοιολογικά θεμέλια της. Χωρίς συνήθως να το δέχονται αλλά και ανοιχτά οι φυσικοί έμπαιναν σε φιλοσοφικά μονοπάτια. 

Μετά το φθινόπωρο του 1926, η πιθανοκρατική ερμηνεία τού Born είχε κατακτήσει την αποδοχή των περισσότερων φυσικών, αν και η ακριβής κατανόηση και οι συνεπαγωγές αυτής της ερμηνείας δεν έπαψαν να αποτελούν αντικείμενο συζήτησης.




Ο De Broglie, του οποίου το έργο για τον δυισμό σωματιδίου και κύματος στάθηκε η αφετηρία της κυματομηχανικής, φάνηκε απρόθυμος να συνταχθεί με την άποψη της πλειοψηφίας, για την πιθανοκρατική ερμηνεία της κβαντομηχανικής. 

Το 1927 πρότεινε ως εναλλακτική εκδοχή τη λεγόμενη «θεωρία της διπλής λύσης», σύμφωνα με την οποία κάθε σωματίδιο μπορούσε να περιγράφεται ως ένα συγκεντρωμένο δέμα ενέργειας, που αντιστοιχούσε σε μια ιδιόμορφη λύση, το οποίο θα καθοδηγούνταν από ένα συνεχές κύμα ψ (ένα «οδηγό κύμα») ερμηνευόμενο σε συμφωνία με την πιθανοκρατική άποψη του Born. 

Με αυτό τον τρόπο ο De Broglie επέτυχε να διατυπώσει μια ντετερμινιστική θεωρία της μικροφυσικής χωρίς να εγκαταλείψει εντελώς τη διαίσθηση του Born σχετικά με την πιθανοκρατούμενη φύση των κβαντικών διαδικασιών. 

Όμως αυτή η άποψη του De Broglie επικρίθηκε σφοδρά από τον Pauli στο Συνέδριο Solvay του 1927, κι έτσι μη μπορώντας να τον αντικρούσει εγκατέλειψε τη θεωρία του. Το 1928 συμμετείχε κι αυτός στην ομάδα της ερμηνείας της Κοπεγχάγης, την οποία ευνοούσαν ο Born, ο Heisenberg, o Bohr και άλλοι, ενώ παρέμεινε πιστός σε αυτήν επί δύο δεκαετίες και πλέον. 

Αλλά το 1952, ο De Broglie επανήλθε σε μια τροποποιημένη εκδοχή της θεωρίας της διπλής λύσης, και από τότε ακολούθησε τη δική του μοναχική πορεία.



Την ίδια χρονιά (1952), μια προσέγγιση παρεμφερή με εκείνη του De Broglie υιοθέτησε ο David Bohm, ο οποίος ως τότε είχε ακολουθήσει μια ορθόδοξη διαδρομή όσον αφορά τις απόψεις του περί κβαντικής θεωρίας. 

Εισάγοντας την έννοια του «κβαντικού δυναμικού», ο Bohm κατόρθωσε να διατυπώσει μια κβαντική θεωρία που, αν και μη κλασική, διατηρούσε ορισμένα κλασικά γνωρίσματα, όπως το ότι τα σωματίδια διέγραφαν καθορισμένες τροχιές σε συμφωνία με την αρχή της αιτιότητας. 

H θεωρία τού Bohm είτε αγνοήθηκε είτε επικρίθηκε ως περιττή, καθότι απλώς αναπαρήγε αποτελέσματα ήδη γνωστά από τη συνήθη κβαντική θεωρία. Κατά τον Heisenberg ήταν «ιδεολογική», ενώ ο Pauli τη θεωρούσε ως «τεχνητή μεταφυσική».



Το Δεκέμβριο του 1926, ο Dirac δημοσίευσε τη θεωρία των μετασχηματισμών η οποία απετέλεσε μια σημαντική πηγή για την κατοπινή αρχή της αβεβαιότητας του Heisenberg που δημοσιεύτηκε την άνοιξη του 1927. 

Ο Dirac συμπέραινε στη θεωρία του: «Κανείς δεν μπορεί στο πλαίσιο της κβαντικής θεωρίας να απαντήσει σε οποιοδήποτε ερώτημα αναφερόμενο σε αριθμητικές τιμές και για την θέση και για την ορμή. Εάν κανείς περιγράψει την κατάσταση του συστήματος σε έναν αυθαίρετο χρόνο αποδίδοντας αριθμητικές τιμές και στις συντεταγμένες και στις ορμές, τότε στην πραγματικότητα δεν θα κατορθώσει να ορίσει μια αμφιμονοσήμαντη αντιστοιχία ανάμεσα στις αρχικές τιμές τούτων των συντεταγμένων και ορμών και στις τιμές τους κατά έναν μεταγενέστερο χρόνο» .

Ήταν φανερό πως η γενική ιδέα της θεμελιώδους αυτής αρχής κυκλοφορούσε διάχυτη στην ατμόσφαιρα επί αρκετό χρόνο πριν την διατυπώσει ο Heisenberg. Όμως ο τελευταίος ήταν αυτός που την διατύπωσε με σαφήνεια. Τον δε Οκτώβριο του 1926 σε μια επιστολή του τελευταίου με τον Pauli έγραφε: «είναι ολότελα χωρίς νόημα να μιλά κανείς για τη θέση ενός σωματιδίου με καθορισμένη ταχύτητα. Εάν όμως κανείς δεχθεί μια λιγότερο ακριβή θέση και ταχύτητα, τούτο όντως έχει κάποιο νόημα».



 


Ο Heisenberg πρέπει να τονιστεί ότι οφείλει αρκετά στους Dirac, Jordan και Pauli, με τους οποίους συζήτησε αρκετά προτού καταλήξει στην Αρχή της Αβεβαιότητας. Όμως, πάνω απ’ όλα, ήταν οι συζητήσεις του με τον Bohr πάνω στα θεμέλια της κβαντικής μηχανικής εκείνες που τον οδήγησαν στη διατύπωση της Αρχής. «Έπειτα από αρκετές εβδομάδες συζητήσεων, από τις οποίες δεν έλειψε η ένταση, σύντομα καταλήξαμε, χάρις και στην όχι ευκαταφρόνητη συμμετοχή του Oskar Klein, στο συμπέρασμα ότι στην πραγματικότητα εννοούσαμε το ίδιο, και ότι οι σχέσεις αβεβαιότητας αποτελούσαν απλώς μια ειδική περίπτωση της γενικότερης αρχής της συμπληρωματικότητας», θυμάται ο Heisenberg.

H εργασία τού Heisenberg χαρακτηριζόταν από το ίδιο είδος θετικιστικών επιχειρημάτων που είχαν λειτουργήσει ως κίνητρο και για την εργασία του το 1925 για την πρώτη διατύπωση της κβαντικής μηχανικής. Εκκινούσε από μια αφετηρία εμφανώς φιλοσοφική: «Εάν κανείς θέλει να καταστήσει σαφές τι σημαίνουν οι λέξεις "θέση ενός αντικειμένου", ενός ηλεκτρονίου δείγματος χάριν ,τότε οφείλει να περιγράψει συγκεκριμένα πειράματα μέσω των οποίων μπορεί να μετρηθεί "η θέση ενός ηλεκτρονίου"· ειδάλλως, αυτός ο όρος δεν έχει απολύτως κανένα νόημα».

Είναι σημαντικό να αντιληφθούμε ότι ο Heisenberg δεν διατύπωσε τις σχέσεις αβεβαιότητας εν είδει φιλοσοφικής διδασκαλίας, αλλά ότι τις εξήγαγε από την κβαντομηχανική και φώτισε τη σημασία τους με τη βοήθεια νοητικών πειραμάτων. Ήταν και παραμένουν συνέπειες της κβαντομηχανικής, και όχι τα εννοιολογικά θεμέλια της θεωρίας.

O Heisenberg απέδειξε ότι η ελάχιστη απροσδιοριστία ως προς τη θέση (Δq) ενός σωματιδίου συνδέεται με την απροσδιοριστία ως προς την ορμή (Δp) του σωματιδίου μέσω της έκφρασης Δq*Δp ≥ h/4π. Απέδειξε επίσης ότι μια αντίστοιχη σχέση υπάρχει ανάμεσα στην αβεβαιότητα κατά τη μέτρηση της ενέργειας μιας κατάστασης και στην αντίστοιχη αβεβαιότητα κατά τη μέτρηση του χαρακτηριστικού χρόνου μεταβολής ενός μεγέθους στη συγκεκριμένη κατάσταση: ΔE*Δt ≥ h/4π. 


Με τις σχέσεις Heisenberg δεν άργησαν να καταπιαστούν πολλοί φυσικοί, οι οποίοι τις ανέλυσαν και επεχείρησαν να τις επεκτείνουν ή να τις τροποποιήσουν, μεταξύ δε αυτών περιλαμβάνεται και ο Schrödinger. Επειδή όμως οι σχέσεις αβεβαιότητας απέρρεαν από την κβαντική μηχανική, έγιναν αποδεκτές από πρακτικά όλους τους φυσικούς.

Ωστόσο, ήταν άλλο πράγμα να αποδέχεται κανείς τα μαθηματικά, και τελείως άλλο να συμφωνεί πάνω στο νόημα και τις φιλοσοφικές συνέπειες της.


Τι ακριβώς σήμαινε η φαινομενικά αθώα σχέση Δq*Δp ≥ h/4π; 

Όπως αποσαφήνισε στην εργασία του ο Heisenberg το 1927, εν πρώτοις σήμαινε ότι η κλασική έννοια της αιτιότητας έπρεπε να εγκαταλειφθεί — όχι επειδή δεν ήταν νόμιμο να συνάγεται ένα μελλοντικό φαινόμενο από ένα παροντικό αίτιο, αλλά διότι ένα φυσικό σύστημα δεν μπορούσε ποτέ να προσδιοριστεί με απόλυτη ακρίβεια. 

Επειδή δεν μπορούμε να γνωρίζουμε το παρόν παρά μόνο όσο μας επιτρέπουν οι περιορισμοί που θέτει η κβαντομηχανική, δεν μπορούμε και να έχουμε παρά μόνο ανακριβή γνώση του μέλλοντος. «Εφόσον όλα τα πειράματα υπακούουν στους κβαντικούς νόμους και, συνεπώς, στις σχέσεις αβεβαιότητας, η σφαλερότητα του νόμου της αιτιότητας αποτελεί οριστικώς εδραιωμένη συνέπεια της ίδιας της κβαντικής μηχανικής», υποστήριζε ο Heisenberg. «Ακόμη και κατ* αρχήν έστω, μας είναι αδύνατον να γνωρίζουμε το παρόν σε κάθε του λεπτομέρεια. Γι’ αυτό το λόγο, καθετί που παρατηρούμε συνιστά μία επιλογή από πληθώρα δυνατοτήτων και έναν περιορισμό σχετικά με το τι θα είναι δυνατόν στο μέλλον».

Φυσικά, κάποιος θα
 μπορούσε να διανοηθεί ότι ο Κόσμος ίσως ήταν αιτιακός σε κάποιο βαθύτερο επίπεδο και ότι η μη αιτιότητα περιοριζόταν μόνο στον κόσμο των φαινομένων. Από τη θετικιστική σκοπιά τού Heisenberg, όμως, αυτή η ένσταση δεν διαφοροποιούσε καθόλου τα πράγματα: «Οι τέτοιου είδους εικασίες μάς φαίνονται, για να το πω ρητά, στερούμενες αξίας και νοήματος, διότι η φυσική οφείλει να περιορίζεται στην περιγραφή των συσχετίσεων μεταξύ αισθητηριακών παρατηρήσεων». Και όμως, οι σχέσεις αβεβαιότητας δεν αποκλείουν κατ’ ανάγκην τον αυστηρό ντετερμινισμό και την αιτιότητα. 


Κατά τη δεκαετία του 1930, το ζήτημα αυτό αναλύθηκε από πολλούς φυσικούς και φιλοσόφους, πρόκειται δε για ένα θέμα που εξακολουθεί να αποτελεί αντικείμενο συζήτησης περισσότερο από πενήντα χρόνια αφότου ο Heisenberg πρότεινε την αρχή του.
Αρχή της Συμπληρωματικοτητας

Πριν περίπου εκατό χρόνια, ο Αλβέρτος Αϊνστάιν ήταν ο πρώτος που είδε ότι η κβαντική υπόθεση του Max Planck οδηγούσε σε ένα διπλό χαρακτήρα της φύσης, που είχε τεθεί σαν αίτημα από τη φυσική φιλοσοφία. 


Ο Αϊνστάιν πρότεινε ότι το φωτόνιο έχει έναν σωματιδιακό χαρακτήρα, αν και τα φωτόνια προηγουμένως θεωρούνταν ότι είχαν μόνο ηλεκτρομαγνητικό κυματικό χαρακτήρα. Αυτή ήταν η πεμπτουσία της εργασίας του για το φωτοηλεκτρικό φαινόμενο. 

Στα τέλη του 1926, ο de Broglie αναγνώρισε ότι όλες οι δομικές μονάδες της φύσης, τα γνωστά μας σωματίδια – ηλεκτρόνια, πρωτόνια, κ.λ.π.- συμπεριφέρονται όπως τα κύματα υπό ορισμένους όρους. 

Στο σύνολό της, επομένως, η φύση είναι διπλή. Κανένα από τα συστατικά της δεν μπορεί να θεωρηθεί μόνο ως σωματίδιο ή ως κύμα. Για να γίνει κατανοητό αυτό το γεγονός, ο Niels Bohr εισήγαγε το 1923 την αρχή της συμπληρωματικότητας: κάθε συστατικό στη φύση έχει ένα σωματιδιακό, καθώς επίσης και έναν κυματικό χαρακτήρα, και εξαρτάται μόνο από τον παρατηρητή ποιο χαρακτηριστικό βλέπει κάποια στιγμή. Με άλλα λόγια, το πείραμα καθορίζει ποιο χαρακτηριστικό μετρά κάποιος – σωματίδιο ή κύμα.



Εάν δε η Αρχή της Αβεβαιότητας του Heisenberg συνιστά απόρροια της κβαντομηχανικής, δεν ισχύει το ίδιο και για την Αρχή της Συμπληρωματικότητας του Bohr. Πρόκειται για ένα σημαντικά ευρύτερο και λιγότερο καλώς καθορισμένο δόγμα, το οποίο είναι πρωτίστως φιλοσοφικής φύσεως. Μολονότι ελάχιστη αμφιβολία χωρεί όσον αφορά το ότι η διατύπωση της αρχής οφείλει πολλά στο έργο τού Heisenberg πάνω στις κβαντικές αβεβαιότητες, η ιδέα της συμπληρωματικότητας δεν ήταν απλώς μια γενίκευση της αρχής τού Heisenberg.

Γεννήθηκε από στοχασμούς γύρω από την κβαντική θεωρία που απασχολούσαν τον Bohr προτού ο Heisenberg αρχίσει το έργο του. O Bohr παρουσίασε πρώτη φορά τις ιδέες του για τη συμπληρωματικότητα σε ένα διεθνές συνέδριο φυσικής στο Κόμο το φθινόπωρο του 1927. Με αυτή την ευκαιρία, ο Bohr τόνισε ότι στον κβαντικό μικρόκοσμο, εν αντιθέσει προς τον κλασικό κόσμο, η παρατήρηση ενός συστήματος δεν μπορεί να γίνει ποτέ χωρίς να διαταραχθεί το εν λόγω σύστημα.

Πώς είναι, λοιπόν, δυνατόν
 να γνωρίζουμε την κατάσταση του συστήματος; Το κβαντικό αυτό αίτημα θα φαινόταν να συνεπάγεται πως η κλασική διάκριση ανάμεσα στον παρατηρητή και το παρατηρούμενο αντικείμενο έπαυε πλέον να είναι βάσιμη. Πώς θα καθίστατο εν τοιαύτη περιπτώσει δυνατόν να επιτευχθεί αντικειμενική γνώση; 


Οι στοχασμοί τού Bohr πάνω σε τούτα και άλλα συναφή ζητήματα τον οδήγησαν στην εισαγωγή της έννοιας της συμπληρωματικότητας με τη σημασία της χρήσης συμπληρωματικών αλλά αμοιβαίως αποκλειόμενων οπτικών για την περιγραφή της φύσης. 

Δύο χρόνια αργότερα, όρισε την αρχή της συμπληρωματικότητας ως «έναν νέο τρόπο περιγραφής [...] υπό την έννοια πως κάθε δεδομένη εφαρμογή των κλασικών εννοιών καθιστά αδύνατη την ταυτόχρονη χρήση άλλων κλασικών εννοιών οι οποίες σε διαφορετική συνάφεια είναι εξίσου αναγκαίες για την ακριβή γνώση των φαινομένων». 

 Αυτή υπήρξε η σαφέστερη μάλλον διατύπωση της αρχής της συμπληρωματικότητας, ενός δόγματος διάσημου για την ασάφεια και την αμφισημία του. H κυματική περιγραφή και η σωματιδιακή περιγραφή (πχ του ηλεκτρονίου) είναι συμπληρωματικές, ως εκ τούτου βρίσκονται σε αντίφαση. 

Εντούτοις, ο Bohr διατεινόταν ότι ο φυσικός εξακολουθεί να είναι ικανός να λογοδοτήσει αναμφίλεκτα για τα πειράματα του, καθόσον στον ίδιο εναπόκειται η επιλογή των μεγεθών που θα μετρηθούν, επιλογή η οποία καταστρέφει τη δυνατότητα να πραγματωθεί η αντιφάσκουσα όψη.

Σε συμφωνία με τον Heisenberg, o Bohr τόνιζε ότι η αποστολή της φυσικής έγκειται στο να προβλέπει και να συνταιριάζει τα πειραματικά αποτελέσματα, όχι στο να ανακαλύπτει την πραγματικότητα που κρύβεται πίσω από τον κόσμο των φαινομένων. «Όταν περιγράφουμε τη φύση», έγραφε το 1929, «ο σκοπός μας δεν είναι να αποκαλύψουμε την πραγματική ουσία των φαινομένων, αλλά απλώς να ανιχνεύσουμε, όσο μας είναι δυνατόν, τις σχέσεις ανάμεσα στις πολλαπλές όψεις της εμπειρίας μας».





Μολονότι ο κυματοσωματιδιακός δυϊσμός αποτελεί το καθιερωμένο παράδειγμα συμπληρωματικότητας, για τον Bohr και τους οπαδούς του η Αρχή αυτή είχε πολύ ευρύτερη σημασία. O Bohr σύντομα την εφάρμοσε σε άλλα πεδία της φυσικής, σε βιολογικά ζητήματα, στην ψυχολογία και σε πολιτισμικά ζητήματα εν γένει. 

Το 1938, επί παραδείγματι, στο Διεθνές Συνέδριο Ανθρωπολογικών και Εθνολογικών Επιστημών, ο Bohr εξήγησε ότι οι συγκινήσεις και οι αισθητηριακές αντιλήψεις των υποκειμένων βρίσκονται σε συμπληρωματική σχέση ανάλογη με εκείνες που απαντούν σε περιστάσεις μετρήσεων στην ατομική φυσική. Άλλοι φυσικοί οι οποίοι συμπορεύονταν με το πρόγραμμα της Κοπεγχάγης δεν δίστασαν να προχωρήσουν ακόμη παραπέρα. 

O Jordan συγκεκριμένα, ανέπτυξε τη συμπληρωματικότητα στα πεδία της ψυχολογίας, της φιλοσοφίας και της βιολογίας κατά έναν τόσο βεβιασμένο τρόπο, ώστε αμήχανος ο Bohr υποχρεώθηκε να τονίσει ότι η εν λόγω έννοια του δεν είχε καμία σχέση με το βιταλισμό (ή ζωτικοκρατία), ούτε και μπορούσε να εκλαμβάνεται ως υπεράσπιση είτε του αντιορθολογισμού είτε του σολιψισμού. 

Στην ακραία ερμηνεία τού Jordan για τη μετρητική διαδικασία υποστηριζόταν, μεταξύ άλλων, ότι οι παρατηρήσεις όχι μόνο διαταράσσουν το μετρούμενο μέγεθος, αλλά ότι κυριολεκτικά αυτές το παράγουν. «Εμείς οι ίδιοι παράγουμε τα αποτελέσματα της μέτρησης», τόνιζε το 1934 ο Jordan.

H αρχή της συμπληρωματικότητας έγινε ο ακρογωνιαίος λίθος αυτού που αργότερα καθιερώθηκε να αναφέρεται ως η ερμηνεία της κβαντικής μηχανικής κατά τη Σχολή της Κοπεγχάγης. O Pauli, μάλιστα, έφθασε μέχρι του σημείου να δηλώσει ότι η κβαντική μηχανική θα μπορούσε να λέγεται «θεωρία της συμπληρωματικότητας», σε αναλογία με τη «θεωρία της σχετικότητας» Το σε τι ακριβώς συνίσταται η ερμηνεία της Κοπεγχάγης, ωστόσο, δεν είναι διόλου σαφέστερο από τη φύση της ίδιας της Αρχής της Συμπληρωματικότητας, όπερ σημαίνει ότι δεν είναι ιδιαίτερα σαφές. 


Πρόκειται για ένα ζήτημα που ακόμη το συζητούν οι φιλόσοφοι και λίγοι φυσικοί οι οποίοι ρέπουν προς το φιλοσοφείν. Στην πραγματικότητα, ο όρος «ερμηνεία της Κοπεγχάγης» πρωτομπήκε στο λεξιλόγιο των φυσικών το 1955, όταν τον χρησιμοποίησε ο Heisenberg για να αντιδιαστείλει την ορθοδοξία από ορισμένες ανορθόδοξες ερμηνείες στις οποίες ασκούσε κριτική.

Πολλοί από τους σημαντικούς φυσικούς της δεκαετίας του 1930, μεταξύ των οποίων και οι Pauli, Heisenberg, Jordan και Rosenfeld, έγιναν ενθουσιώδεις υποστηρικτές της φιλοσοφίας κατά Bohr της συμπληρωματικότητας, και την έβλεπαν ως τον αληθινό εννοιολογικό πυρήνα της κβαντικής μηχανικής. 


Είναι αξιοσημείωτο ότι όλοι οι φυσικοί που ανεπιφύλακτα υιοθέτησαν τη σκοπιά τού Bohr διατηρούσαν προσωπική επαφή με τον δανό φυσικό και είχαν φιλοξενηθεί στο ινστιτούτο του. Έξω από τον κύκλο της Κοπεγχάγης, η φιλοσοφία της συμπληρωματικότητας έτυχε σημαντικά ψυχρότερης υποδοχής, η οποία κυμαινόταν από την ευγενική αδιαφορία ως και, σε λιγοστές περιπτώσεις, την εχθρότητα. 

O Dirac, για παράδειγμα, ενώ διατηρούσε στενές σχέσεις με τους φυσικούς του Ινστιτούτου της Κοπεγχάγης και έτρεφε μεγάλο σεβασμό για τον Bohr, δεν έβλεπε τίποτε άξιο λόγου σε όλη την κουβέντα περί συμπληρωματικότητας. Δεν οδηγούσε σε καινούργιες εξισώσεις ούτε και μπορούσε να χρησιμοποιηθεί στους υπολογισμούς, τους οποίους ο Dirac έτεινε να ταυτίζει με τη φυσική.

Ένας δε σπουδαστής του Ινστιτούτου Bohr ο Christian Müller, ο οποίος φοίτησε στο ινστιτούτο από το 1926 ώς το 1932 και παρέμεινε εκεί καθ’ όλη τη σταδιοδρομία του δεν έτρεφε ιδιαίτερο ενδιαφέρον για τα ευρέα εννοιολογικά προβλήματα στα οποία απέδιδε μεγάλη σημασία ο Bohr. «Μολονότι γινόμασταν ακροατές εκατοντάδων επί εκατοντάδων συζητήσεων γύρω από αυτά τα θέματα [τη συμπληρωματικότητα και τα προβλήματα των μετρήσεων], και μας ενδιέφεραν, δεν νομίζω ότι κανένας από εμάς, εκτός από τον Rosenfeld ίσως, αφιέρωνε πολύ χρόνο σε αυτή την υπόθεση», έγραψε αργότερα.

Την ίδια στάση τήρησαν και πολλοί άλλοι νεαροί κβαντικοί φυσικοί, ιδιαίτερα δε στις Ηνωμένες Πολιτείες, όπου η φήμη του Bohr ως κβαντικού γκουρού ήταν πολύ πιο περιορισμένη απ’ ό,τι στην Ευρώπη. Τα «σχεδόν φιλοσοφικά» προβλήματα δεν θεωρούνταν ιδιαίτερα ελκυστικά. Επικέντρωναν την προσοχή τους σε πειράματα και σε συγκεκριμένους υπολογισμούς, και για τους σκοπούς αυτούς η αρχή της συμπληρωματικότητας δεν φαινόταν να έχει την παραμικρή χρησιμότητα. 


Με αυτό δεν εννοούμε ότι μεταξύ των Αμερικανών δεν υπήρξε κανένα ενδιαφέρον για τα προβλήματα θεμελίωσης, αλλά απλώς ότι το ενδιαφέρον κινήθηκε σε άλλες κατευθύνσεις και ότι εκδηλώθηκε σε μικρότερη κλίμακα απ’ ό,τι στη Δανία και τη Γερμανία. Το ότι η σπουδαιότητα της αρχής της συμπληρωματικότητας κατά την εξεταζόμενη περίοδο υπήρξε σχετικώς μέτρια φαίνεται επίσης και από τα εγχειρίδια από τα οποία διδάσκονταν οι φοιτητές την κβαντική θεωρία. 

Οι περισσότεροι συγγραφείς εγχειριδίων, ακόμη και αν έτρεφαν συμπάθεια για τις ιδέες τού Bohr, δυσκολεύονταν να συμπεριλάβουν σε αυτά και να δικαιολογήσουν ένα εδάφιο πάνω στη συμπληρωματικότητα. 

Παρά το γεγονός ότι μια μεγάλη μερίδα των φυσικών του κόσμου δεν επιδοκίμαζε την ερμηνεία της Κοπεγχάγης, ή μάλλον δεν νοιαζόταν γι’ αυτήν, η αντίσταση απέναντι της υπήρξε ασθενής και όχι ενιαία. Όποιοι κι αν ήταν οι λόγοι, κατά τα μέσα της δεκαετίας του 1930 ο Bohr είχε επιτύχει σε αξιοσημείωτο βαθμό να επιβάλει την ερμηνεία της Κοπεγχάγης ως την κυρίαρχη φιλοσοφία της κβαντικής μηχανικής.
Ενάντια στην Ερμηνεία της Κοπεγχάγης

Ίσως το πλέον περίφημο, και το πλέον μυθοποιημένο, επεισόδιο στην ιστορία της φυσικής του 20ού αιώνα είναι η αναμέτρηση του Αϊνστάιν με τον Bohr αναφορικά με την ερμηνεία της κβαντικής μηχανικής. H σειρά των σωκρατικών συζητήσεων ανάμεσα στους δύο εμβριθείς και θρυλικούς φυσικούς-φιλοσόφους έχει καταστεί μέρος των παραδόσεων της φυσικής, καθώς και των γενικών διανοητικών παραδόσεων. Ανεξάρτητα από τις λεπτομέρειες τους, οι συζητήσεις τους κατέχουν μια θέση στη δυτική διανοητική ιστορία ανάλογη με εκείνη, ας πούμε, της προ τριών περίπου αιώνων διαμάχης μεταξύ Νεύτωνα και Leibniz. 


Μολονότι η κβαντική μηχανική όφειλε πολλά στις θεμελιώδεις συμβολές του Αϊνστάιν κατά την περίοδο 1905-1925, ο ίδιος δεν έδειξε κατ’ αρχάς μεγάλο ενδιαφέρον για την καινούργια θεωρία. Διαμορφώνοντας μια γενική στάση απέναντι της που διαπνεόταν από σκεπτικισμό, αρνήθηκε, για φιλοσοφικούς μάλλον παρά για επιστημονικούς λόγους, ότι ο μικρόκοσμος δεν μπορούσε να περιγραφεί παρά μόνο στατιστικά. Σε μια περίφημη επιστολή που απηύθυνε στον Born τον Δεκέμβριο του 1926, ο Αϊνστάιν έγραφε για την «εσωτερική του φωνή» που του έλεγε ότι η κβαντική μηχανική «ουδόλως μας φέρνει πιο κοντά στο μυστικό του Υψίστου. [...] Είμαι πεπεισμένος ότι Εκείνος δεν παίζει ζάρια».

H δυσαρέσκεια του Αϊνστάιν για τη στατιστική ερμηνεία οδήγησε σε μια εργασία που παρουσιάστηκε προφορικά στην Πρωσική Ακαδημία Επιστημών στις αρχές του 1927. Στο χειρόγραφο, το οποίο έφερε τον τίτλο «Καθορίζει η κυματομηχανική τού Schrodinger την κίνηση ενός συστήματος πλήρως ή μόνο υπό τη στατιστική έννοια;», σκιαγραφούνταν κάποιου είδους θεωρία κρυμμένων μεταβλητών. Αλλά ο Αϊνστάιν πρέπει να αντιλήφθηκε ότι η εναλλακτική λύση που πρότεινε δεν ήταν ικανοποιητική, διότι ουδέποτε υπέβαλε το χειρόγραφο προς δημοσίευση.

O Αϊνστάιν συμμετείχε στο 5ο Συνέδριο Solvay τον Οκτώβριο του 1927, όπου ο Bohr, o Dirac, o Heisenberg, o Pauli, o Schrodinger και άλλοι εξέχοντες φυσικοί συζήτησαν τη θεμελίωση της κβαντικής μηχανικής. O Bohr έδωσε διάλεξη πάνω στις νέες του ιδέες για τη συμπληρωματικότητα, περί της οποίας πρώτη φορά άκουσε ο Αϊνστάιν. O Αϊνστάιν δεν πείσθηκε από τα λεχθέντα και υποστήριξε ότι η ερμηνεία Bohr-Heisenberg, κατά την οποία η κβαντική μηχανική αποτελούσε μια πλήρη θεωρία των επιμέρους διαδικασιών, αντέφασκε προς τη θεωρία της σχετικότητας. 


Παρουσίασε και ανέλυσε διάφορα νοητικά πειράματα με την ελπίδα να καταδείξει ότι οι σχέσεις αβεβαιότητας δεν ήταν κατ’ ανάγκην ισχυρές και ότι ορισμένα ατομικά φαινόμενα μπορούσαν να αναλυθούν λεπτομερέστερα απ’ ό,τι επέτρεπαν οι σχέσεις Heisenberg. Όταν ο Bohr απέδειξε την αβασιμότητα των επιχειρημάτων τού Αϊνστάιν, εκείνος επανήλθε με ένα νέο νοητικό πείραμα, το οποίο και πάλι αντέκρουσε ο Bohr. 

Σύμφωνα με τον Bohr, η κβαντική μηχανική (συμπεριλαμβανομένων των σχέσεων αβεβαιότητας) συνιστούσε μια πλήρη θεωρία που εξαντλούσε όλες τις δυνατότητες ερμηνείας των παρατηρήσιμων φαινομένων. Δεν χωρεί αμφιβολία ότι ο Bohr εξήλθε «νικητής» από τις συζητήσεις τού 1927 και ότι οι περισσότεροι από τους συμμετέχοντες αναγνώρισαν τη δύναμη των επιχειρημάτων του. 

O Αϊνστάιν ναι μεν αναγνώρισε την οξυδέρκεια που επέδειξε ο Bohr ως συνομιλητής του, δεν έστερξε όμως να παραδεχτεί την ορθότητα των απόψεων του. Σε μια επιστολή του προς τον Schrodinger μισό χρόνο μετά το συνέδριο, ο Αϊνστάιν περιέγράφε σαρκαστικά την ερμηνεία της Κοπεγχάγης αποκαλώντας την «η ηρεμιστική φιλοσοφία των Heisenberg και Bohr — ή μήπως θρησκεία;» Και προσέθετε ότι «προσφέρει ένα απαλό προσκέφαλο για τον αληθινό πιστό που δύσκολα τον αφήνει να αφυπνισθεί».

O δεύτερος γύρος της περίφημης αντιπαράθεσης Bohr-Αϊνστάιν
 έλαβε χώρα στο 6ο Συνέδριο Solvay, τον Οκτώβριο του 1930, όταν η μποριανή ιδέα της συμπληρωματικότητας δυνάμωνε την επιρροή της μεταξύ των ευρωπαίων φυσικών. Αυτή τη φορά, ο Αϊνστάιν εστίασε στη σχέση αβεβαιότητας ενέργειας-χρόνου (ΔE*Δt ≥ h/4π), την οποία και επεχείρησε να καταρρίψει. Τα μέσα που επιστρατεύθηκαν για την κατάρριψη ήταν τα ίδια όπως και πριν τρία χρόνια, ένα νοητικό πείραμα. 


Στο καινούργιο του νοητικό πείραμα, το οποίο αργότερα έγινε γνωστό ως πείραμα του κουτιού με το φωτόνιο, ο Αϊνστάιν επικαλέστηκε τη σχέση μάζας-ενέργειας της ειδικής σχετικότητας, E =mc2, και υποστήριξε ότι η ενέργεια ενός φωτονίου και ο χρόνος άφιξης του σε μια οθόνη μπορούσαν να προβλεφθούν με απεριόριστη ακρίβεια, σε αντίφαση με τη σχέση αβεβαιότητας. O Bohr όμως απάντησε λαμπρά στην πρόκληση, επικαλούμενος τον τύπο της ερυθράς μετατόπισης της γενικής θεωρίας της σχετικότητας του Αϊνστάιν. 

H έκβαση του δεύτερου γύρου της αντιπαράθεσης υπήρξε η ίδια όπως και του πρώτου: η μποριανή αντίληψη της κβαντικής μηχανικής ενισχύθηκε, και ο σκεπτικισμός τού Αϊνστάιν φάνηκε αδικαιολόγητος. Μέχρι τότε, ο Αϊνστάιν είχε ελπίσει να καταρρίψει την κβαντική μηχανική αποδεικνύοντας ότι οι σχέσεις αβεβαιότητας δεν ευσταθούσαν· η πίστη του στην έσχατη αιτιότητα παρέμεινε ακλόνητη, και κατά τη δεκαετία του 1930 μετατόπισε την εστία των ενστάσεων του από την ασυνέπεια στη μη πληρότητα.

Το στατιστικό νόημα της κυματοσυνάρτησης
 δεν αποκλείει κατ’ ανάγκην τη δυνατότητα τα επιμέρους ατομικά γεγονότα να καθορίζονται από κάποιες παραμέτρους, που δεν έχουν ανακαλυφθεί ακόμη, και βρίσκονται σε ένα άγνωστο σε μας υποεπίπεδο. 


Πριν δε την κβαντομηχανική – αρχές του 20ου αιώνα – έγινε προσπάθεια να εξηγηθεί αιτιακά η πιθανότητα της διάσπασης των ραδιενεργών πυρήνων και να ανακαλυφθούν κάποιες κρυμμένες μεταβλητές που να καθόριζαν τον χρόνο της διάσπασης των πυρήνων. H δυνατότητα ύπαρξης παρόμοιων «κρυμμένων μεταβλητών» αναγνωρίστηκε σε μια πρώιμη φάση της κβαντικής μηχανικής, αλλά στο βαθμό που οι υποθετικές αυτές παράμετροι δεν είχαν φυσική σημασία, δεν τους δόθηκε μεγάλη προσοχή. Ωστόσο, εξακολουθούσαν να αποτελούν μια δυνατότητα, και μάλιστα ελκυστική, για όσους αποστρέφονταν την ερμηνεία της Κοπεγχάγης. 

Εάν η κβαντική μηχανική μπορούσε να διατυπωθεί με όρους κρυμμένων μεταβλητών, και αν αναπαρήγε όλα τα αποτελέσματα της καθιερωμένης θεωρίας, τότε θα έμοιαζε να μην υπάρχει κάποιος ακαταμάχητος λόγος ώστε οι φυσικοί να αναγκάζονται να αποδεχτούν την εικόνα του ατομικού κόσμου σύμφωνα με τη Σχολή της Κοπεγχάγης.




Το ζήτημα των κρυμμένων μεταβλητών ήταν μεταξύ των προβλημάτων που εξέτασε ο διάσημος μαθηματικός John von Neumann σε ένα βιβλίο τού 1932 με τον τίτλο Mathematische Grundlagen der Quantenmechanik (Μαθηματικά θεμέλια της κβαντικής μηχανικής). 

O von Neumann έδωσε μια μαθηματικώς ακριβή διατύπωση στη θεμελίωση της κβαντικής μηχανικής, βασίζοντας τη θεωρία στη χρήση των χώρων Hubert. Σε ένα έργο του 1933, ο γάλλος φυσικός Jacques Solomon οδηγήθηκε ανεξάρτητα στο ίδιο συμπέρασμα, ότι δηλαδή οι κρυμμένες παράμετροι είναι ασυνεπείς με τον παραδεδεγμένο φορμαλισμό της κβαντικής μηχανικής. Σε ένα μικρό μέρος του σημαντικού του βιβλίου, ο von Neumann απέδειξε ότι μια αιτιακή κατανόηση της κβαντικής μηχανικής βασιζόμενη σε κρυμμένες μεταβλητές είναι αδύνατη. 

Σύμφωνα με τον von Neumann, «Δεν έχουμε επομένως να κάνουμε, όπως συχνά γίνεται δεκτό, με ένα ζήτημα επανερμηνείας της κβαντικής μηχανικής —το παρόν σύστημα της κβαντικής μηχανικής θα έπρεπε να είναι αντικειμενικά εσφαλμένο για να είναι δυνατή μια περιγραφή των στοιχειωδών διαδικασιών διαφορετική από τη στατιστική». 

Η μαθηματική του απόδειξη έγινε ευρέως αποδεκτή και ενίοτε εξελήφθη ως απόδειξη της ερμηνείας της Κοπεγχάγης. Στην πραγματικότητα, ανάμεσα στη θέση τού Bohr και την ερμηνεία τού von Neumann υπήρχαν σημαντικές διαφορές, αλλά οι διακρίσεις σπανίως επισημαίνονταν. Επί παραδείγματι, το «πρόβλημα της μέτρησης» δεν ετίθετο με τον ίδιο τρόπο για τον Bohr και για τον von Neumann. 

O Bohr έτεινε να το βλέπει ως πρόβλημα γενίκευσης του κλασικού πλαισίου ώστε να αποφευχθούν οι αντιφάσεις ανάμεσα σε δύο αμοιβαίως ασυμβίβαστες κλασικές έννοιες, αμφότερες αναγκαίες στην περιγραφή των πειραμάτων. Και η λύση του συνίστατο στη συμπληρωματικότητα. Για τον von Neumann, από την άλλη πλευρά, πρόβλημα της μέτρησης σήμαινε το μαθηματικό πρόβλημα του να αποδειχθεί ότι ο φορμαλισμός δίνει τις ίδιες προβλέψεις για διάφορες θέσεις της «τομής» μεταξύ παρατηρητή και αντικειμένου.

Πολύ μεγάλο ρόλο ασφαλώς έπαιξε η απόδειξη του von Neumann, 
ότι δεν είναι δυνατόν να υπάρχουν κρυμμένες μεταβλητές, στη διαδικασία η οποία οδήγησε στην ηγεμονία της ερμηνείας της Κοπεγχάγης. Και μάλιστα η απόδειξη του συχνά αναφερόταν ως η τελευταία λέξη πάνω στο συγκεκριμένο θέμα.

O ρόλος της ανθρώπινης συνείδησης κατά τη διαδικασία μέτρησης αποτελούσε μέρος της κβαντοφιλοσοφικής συζήτησης της δεκαετίας του 1930
. Έτσι, ο von Neumann υποστήριξε ότι το στοιχείο της συνείδησης ήταν αδύνατον να αποκλειστεί, ενώ σε μια μονογραφία τού 1939 οι Fritz London και Edmond Bauer ισχυρίστηκαν ανοιχτά ότι η αναγωγή της κυματοσυνάρτησης ήταν το αποτέλεσμα μιας συνειδητής δραστηριότητας του ανθρώπινου νου. «Φαίνεται ότι το αποτέλεσμα της μέτρησης συνδέεται στενά με τη συνείδηση του προσώπου που την πραγματοποιεί, και ότι έτσι η κβαντική μηχανική μάς οδηγεί στον πλήρη σολιψισμό», έγραφαν, μόνο και μόνο για να υποστηρίξουν ότι, σε τελική ανάλυση, ο νέος ρόλος της παρατηρούσας συνείδησης δεν υπονόμευε την αντικειμενικότητα. Μέσα στο πνεύμα του θετικισμού, σημείωναν με ικανοποίηση ότι τίποτε στη διαδικασία της μέτρησης δεν θα «μας εμπόδιζε να προβλέπουμε ή να ερμηνεύουμε πειραματικά αποτελέσματα».

Στα μέσα της δεκαετίας του 1960
 ο βρετανός φυσικός John Bell, απέδειξε ότι η απόδειξη του von Neumann δεν απέκλειε στην πραγματικότητα όλες τις θεωρίες που λειτουργούσαν με κρυμμένες παραμέτρους. O BeIl, ο οποίος διαδραμάτισε εξέχοντα ρόλο στην αντιπαράθεση γύρω από την ερμηνεία της κβαντικής μηχανικής, αντλούσε έμπνευση από τη θεωρία τού Bohm και εν γένει διέκειτο ευμενώς προς τις θεωρίες με κρυμμένες μεταβλητές.
Είναι η Κβαντική Μηχανική Πλήρης; Το νοητικό πείραμα EPR

Μετά την «ήττα» του το 1930, 
ο Αϊνστάιν συνέχισε να στοχάζεται βαθιά σχετικά με την επιστημολογική κατάσταση πραγμάτων στην κβαντική μηχανική, όντας πεπεισμένος ότι κάποια ακριβής και αιτιακή περιγραφή των φυσικών φαινομένων έπρεπε να είναι οπωσδήποτε δυνατή. Την άνοιξη του 1935, εγκατεστημένος πλέον στις ΗΠΑ, ο Αϊνστάιν δημοσίευσε, μαζί με τους νεαρούς συναδέλφους του στο Πανεπιστήμιο του Πρίνστον Boris Podolsky και Nathan Rosen, μια σύντομη αλλά διάσημη εργασία υπό τον τίτλο «Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?» (Μπορεί να θεωρείται πλήρης η κβαντομηχανική περιγραφή της φυσικής πραγματικότητας;). H τελική εκδοχή της εργασίας γράφηκε από τον Podolsky και διατυπώθηκε κατά τρόπο που ο Αϊνστάιν δεν τον ενέκρινε πλήρως. Οι τρεις συγγραφείς άρχιζαν δηλώνοντας ότι οι φυσικές έννοιες πρέπει να αντιστοιχούν σε όψεις της φυσικής πραγματικότητας. 


Το κριτήριο πραγματικότητας που πρότειναν ήταν το εξής: «Εάν, χωρίς να διαταράξουμε καθ’ οιονδήποτε τρόπο ένα σύστημα, μπορούμε να προβλέψουμε μετά βεβαιότητας (δηλαδή, με πιθανότητα ίση με τη μονάδα) την τιμή ενός φυσικού μεγέθους, τότε υπάρχει ένα στοιχείο φυσικής πραγματικότητας που αντιστοιχεί σε αυτό το φυσικό μέγεθος». H εισαγόμενη αντιστοιχία οδηγούσε σε μια αναγκαία συνθήκη για την πληρότητα μιας φυσικής θεωρίας, συγκεκριμένα δε στην εξής: «Κάθε στοιχείο της φυσικής πραγματικότητας πρέπει να έχει ένα αντίστοιχό του στη φυσική θεωρία». 

Οι Αϊνστάιν, Podolsky και Rosen (EPR) ισχυρίζονταν εν συνεχεία ότι η κβαντική μηχανική, σε συνδυασμό με το κριτήριο της φυσικής πραγματικότητας, οδηγούσε σε αντίφαση, και ότι δεν υπήρχε καμία άλλη εναλλακτική λύση εκτός από το να αναγνωριστεί ότι η κβαντομηχανική περιγραφή της πραγματικότητας στερείται πληρότητας. Το επιχείρημα της εργασίας των EPR ήταν κατ’ ουσίαν αρνητικό, υπό την έννοια ότι αποσκοπούσε στην υπονόμευση της καθιερωμένης αντίληψης περί κβαντικής μηχανικής χωρίς να προτείνει κάποια εναλλακτική θεωρία. Στην κατακλείδα της εργασίας τους, ο Αϊνστάιν και οι συνεργάτες του «άφηναν ανοιχτό το ζήτημα του κατά πόσον υπάρχει ή όχι μια τέτοια [πλήρης] περιγραφή», προσθέτοντας: «Πιστεύουμε, ωστόσο, ότι μια τέτοια θεωρία είναι δυνατή».

O Bohr ενοχλήθηκε έντονα από το επιχείρημα των EPR
 και άρχισε αμέσως να αναπτύσσει ένα αντεπιχείρημα, του οποίου την επεξεργασία ολοκλήρωσε έπειτα από μια περίοδο πέντε περίπου μηνών. H βασική του γραμμή επιχειρηματολογίας συνίστατο στην απόρριψη του κριτηρίου φυσικής πραγματικότητας που πρότειναν οι Αϊνστάιν, Podolsky και Rosen. O Bohr έκρινε το κριτήριο αυτό άκυρο επειδή προϋπέθετε ότι το σύστημα αντικείμενο συν τη μετρητική διάταξη μπορούσε να αναλυθεί σε χωριστά μέρη· κάτι τέτοιο ήταν αδύνατον σύμφωνα με την αντίληψη της ερμηνείας της Κοπεγχάγης, κατά την οποία αντικείμενο και μετρητική διάταξη αποτελούσαν ένα ενιαίο, ακέραιο σύστημα.

Ενώ το επιχείρημα των EPR απέκτησε μεγάλη φήμη από τη δεκαετία του 1960 και εντεύθεν, τη δεκαετία του 1930 αυτός ο τρίτος γύρος της αντιπαράθεσης Bohr-Αϊνστάιν δεν προκάλεσε μεγάλο ενδιαφέρον ανάμεσα στους φυσικούς. H εργασία των EPR δεν επέτυχε να πείσει τους φυσικούς να εγκαταλείψουν την ερμηνεία της Κοπεγχάγης, και η γενική εντύπωση που δημιουργήθηκε ήταν ότι ο Bohr είχε και πάλι αντικρούσει ικανοποιητικά τις ενστάσεις τού Αϊνστάιν. Για τους κβαντικούς φυσικούς του κυρίαρχου ρεύματος, απλώς λειτούργησε ως επιβεβαίωση αυτού που ανέκαθεν σκέπτονταν, ότι δηλαδή ο Αϊνστάιν και οι σύμμαχοι του — «οι συντηρητικοί, γηραιοί κύριοι», όπως τους περιέγραφε ο Pauli σε μια επιστολή του προς τον Schrodinger — βρίσκονταν απελπιστικά σε διάσταση με την εξέλιξη. H μεγάλη πλειονότητα των φυσικών φαίνεται ότι απλώς δεν έδειξε το παραμικρό ενδιαφέρον. Μπορούσαν εύκολα να βρουν καλύτερα πράγματα να κάνουν από το να προσπαθούν να καταλάβουν φιλοσοφικά επιχειρήματα που δεν άπτονταν καθόλου της καθημερινής τους δουλειάς.



Το νοητικό πείραμα της γάτας του Schrödinger



Οι φυσικοί, ωστόσο, που είχαν μεγαλύτερη κλίση προς το φιλοσοφείν, μεταξύ των οποίων και ο Schrödinger, βρήκαν την ανάλυση των EPR άκρως ενδιαφέρουσα. Σε συμβολές τού 1935, ο πατέρας της κυματομηχανικής υποστήριξε την άποψη του Αϊνστάιν και ανέπτυξε δικές του αντιρρήσεις κατά της θέσης τού Bohr σχετικά με την κβαντική θεωρία. Σε μία από αυτές τις συμβολές, μάλιστα, πρότεινε ένα επιχείρημα, διαφορετικό από εκείνο των EPR, κατά της πληρότητας της κβαντικής μηχανικής. 

Είναι δε περίφημος ο τρόπος με τον οποίο προσπάθησε να παρουσιάσει παραστατικά τη βασική σκέψη του: μια δυστυχής γάτα βρίσκεται κλεισμένη σε ένα θάλαμο μαζί με κάποια ποσότητα ραδιενεργού υλικού και ένα διαβολικό κατασκεύασμα που, μόλις τεθεί σε λειτουργία από μια διάσπαση του ραδιενεργού υλικού (σε τυχαίο χρόνο), θα απελευθερώσει θανατηφόρους ατμούς υδροκυανικού οξέος, και η γάτα θα πεθάνει.

Στον καθημερινό μας κόσμο
 υπάρχει μια πιθανότητα 50-50 η γάτα να πεθάνει, και χωρίς να κοιτάξουμε στο εσωτερικό του κουτιού μπορούμε να πούμε, αρκετά εύκολα, ότι η γάτα που βρίσκεται μέσα είναι είτε ζωντανή είτε νεκρή.

Το παράδοξο συμπέρασμα του Schrödinger είχε ως εξής: Εάν κανείς άφηνε αυτό το σύστημα ως όλον μόνο του επί μία ώρα, θα έλεγε ότι η γάτα εξακολουθεί να ζει αν εν τω μεταξύ δεν διασπάστηκε κανένα άτομο. H πρώτη διάσπαση ατόμου που θα συνέβαινε θα την είχε δηλητηριάσει.

Ο κβαντικός όμως κόσμος είναι παράξενος. Σύμφωνα με τη κβαντική θεωρία, καμιά από τις δύο δυνατότητες που υπάρχουν για το υλικό, και επομένως και για τη γάτα, δεν είναι πραγματική, εκτός και αν παρατηρηθεί. Η ραδιενεργός ατομική αποσύνθεση ούτε έχει συμβεί ούτε δεν έχει συμβεί και η γάτα ούτε έχει πεθάνει ούτε είναι ζωντανή, μέχρις ότου κοιτάξουμε στο εσωτερικό του κουτιού και δούμε τι έγινε!

Οι θεωρητικοί που αποδέχονται την καθαρή εκδοχή της κβαντομηχανικής ισχυρίζονται ότι η γάτα υπάρχει σε κάποια απροσδιόριστη κατάσταση, ούτε ζωντανή ούτε νεκρή, έως ότου κάποιος παρατηρητής κοιτάξει στο κουτί και δει πώς παν τα πράγματα. Τίποτε δεν είναι πραγματικό, εκτός εάν παρατηρείται.

Σε ότι αφορά τη μη πραγματική κατάσταση της γάτας του Schroedinger, ο Αϊνστάιν την είχε απορρίψει, υιοθετώντας ότι θα έπρεπε να υπάρχει κατά βάθος κάποιος ωρολογιακός μηχανισμός (συγκεκαλυμμένες μεταβλητές ή παράμετροι), ο οποίος και κατευθύνει τη θεμελιώδη πραγματικότητα των καταστάσεων. Ξόδεψε πολλά χρόνια προσπαθώντας να επινοήσει διάφορα τεστ τα οποία ίσως να αποκάλυπταν αυτή τη θεμελιώδη πραγματικότητα, αλλά πέθανε πριν καταστεί δυνατό να πραγματοποιήσει ένα τέτοιο πείραμα.

Οι περισσότεροι από τους φυσικούς, προσαρμόστηκαν πολύ καλά, μερικοί όμως ουδέποτε πείστηκαν. O ίδιος ο Einstein αντέδρασε σε όλες τις απαντήσεις του Bohr παρατηρώντας ότι η θέση του ήταν λογικά δυνατή αλλά «τόσο αντίθετη με το επιστημονικό μου ένστικτο, ώστε δεν μπορώ να εγκαταλείψω την εργασία μου για να καταλάβω περισσότερα».

Ως τώρα δεν βρέθηκε καμιά «πληρέστερη κατανόηση» και φαίνεται πως το καλύτερο που έχουμε να κάνουμε είναι να παραμείνουμε στην ερμηνεία της Κοπεγχάγης. Αυτό όμως οδηγεί σ’ ένα άλλο μεγάλο πρόβλημα του οποίου οι εννοιολογικές και φιλοσοφικές συνέπειες ξεπερνούν κατά πολύ όσα αναφέραμε ως τώρα. Πρόκειται για το μετρητικό πρόβλημα.
Απόψεις για την Πραγματικότητα

Ποιά σχέση άραγε να υπάρχει μεταξύ των επιστημονικών θεωριών και της πραγματικότητας; Από τον 17ο αιώνα που άρχισε ν’ αναπτύσσεται η μηχανιστική φιλοσοφία μέσω του έργου των Ρενέ Ντεκάρτ (Καρτέσιου) και Τζον Λοκ, είναι ευρέως αποδεκτό ότι η γνώση που διαθέτουμε για τον κόσμο περιορίζεται από την αποκτώμενη εμπειρία. 



Αν, όντως, στην πραγματικότητα είναι υπαρκτά τα υλικά αντικείμενα, δεν γίνονται αντιληπτά άμεσα αλλά μόνο ως αποτέλεσμα της επίδρασης τους στις αισθήσεις μας, και η – μέσω των αισθήσεων – αποκτώμενη εμπειρία γίνεται το τελικό αποτέλεσμα μιας μακριάς αλυσίδας «αιτιωδών» σχέσεων η οποία συνδέει τον εξωτερικό υλικό κόσμο με τον εγκέφαλο ενός παρατηρητή. 

Κατά συνέπεια, όλες οι προσπάθειες που κάνουμε για να αντιληφθούμε τη φύση του εξωτερικού κόσμου έχουν υποθετικό χαρακτήρα, αφού δεν έχουμε άμεση γνώση του κόσμου αυτού, αλλά μόνο οι διεγέρσεις στον εγκέφαλο που αυτός παράγει. Αυτό το είδος ανάλυσης οδηγεί σε μια πειστική φιλοσοφικά περιγραφή της σχέσης που υπάρχει μεταξύ επιστήμης και πραγματικότητας. 

Επειδή οι δε επιστημονικές θεωρίες «αποπειρώνται να περιγράψουν» τη φύση ενός εξωτερικού κόσμου, δεν είναι και σίγουρη η ορθότητα τέτοιων θεωριών, αφού δεν διαθέτουμε την άμεση εκείνη πρόσβαση προς την πραγματικότητα η οποία θα μας επέτρεπε να αποδείξουμε την «αλήθεια» τους. Πολλοί μάλιστα φιλόσοφοι διακρίνουν μια καθαρή διάκριση μεταξύ του «είναι» και του «φαίνεσθαι» ή, ακριβέστερα, μεταξύ του εξωτερικού κόσμου και της μέσω των αισθήσεων αποκτώμενης εμπειρίας του κόσμου αυτού. 

Το περισσότερο που θα μπορούσε κανείς να πει είναι ότι η περιγραφή του εξωτερικού κόσμου που προκύπτει από μια τέτοια θεωρία πιθανώς να είναι αληθινή, εξασφαλίζοντας έτσι το γεγονός ότι κάτι τέτοιο δεν οδηγεί σε συμπεράσματα τα οποία διαψεύδονται από τις μέσω των αισθήσεων αποκτώμενες εμπειρίες του παρατηρητή. Λόγω του υποθετικού χαρακτήρα των επιστημονικών θεωριών, δεν θάπρεπε κανείς να εκπλαγεί από το γεγονός ότι η κοσμοθεωρία της Φυσικής έχει αλλάξει αρκετές φορές κατά το παρελθόν.

Μια άλλη, δεύτερη, απόπειρα να ξεκαθαρίσει η σχέση μεταξύ επιστήμης και πραγματικότητας πηγάζει από ένα εναλλακτικό σχήμα το οποίο έχει τις ρίζες του στον Ιδεαλισμό. Σύμφωνα με την οπτική αυτή, ο εξωτερικός κόσμος δεν υφίσταται υπό την έννοια μιας πραγματικότητας ανεξάρτητης από την ύπαρξη παρατηρητή. Ένας τέτοιος εξωτερικός κόσμος θεωρείται είτε ότι δεν υπάρχει είτε ότι είναι μια χωρίς νόημα έννοια, που είναι και η πιο συνηθισμένη στις μέρες μας αντίληψη. 


Αντιθέτως, ο κόσμος θεωρείται σαν να είναι «δομημένος» από αντικείμενα της ίδιας φύσης με τις εμπειρίες που αποκτώνται μέσω των αισθήσεων. Στόχος κάθε επιστημονικής θεωρίας δεν είναι να δώσει μια περιγραφή του εξωτερικού κόσμου, αλλά απλώς να οργανώσει τις (μέσω των αισθήσεων αποκτώμενες) εμπειρίες αυτές σε κάποιο αυτοσυνεπές πρότυπο, το οποίο να περιγράφεται από ένα σύνολο κανόνων ή νόμων.

Οι περισσότεροι όμως επιστήμονες τείνουν ενστικτωδώς μάλλον προς την πρώτη, τη «ρεαλιστική», ερμηνεία της επιστήμης παρά προς τη δεύτερη, την «αντιρεαλιστική» προσέγγιση της.

Στην πρώτη ερμηνεία, την ρεαλιστική ή υλιστική ερμηνεία (Δημόκριτος, Γαλιλαίος, Νεύτωνας, Πλάνκ, Αϊνστάιν, De Broglie, Bohm, Schroedinger, von Laue, Langevin, κ.ά.) δέχονται ότι: 


Α! Υπάρχει μια φυσική, αντικειμενική πραγματικότητα, 
ανεξάρτητη από το υποκείμενο και τα μέσα πειραματισμού. Ο πειραματιστής δηλαδή δεν επηρεάζει το αποτέλεσμα της μέτρησης. 


Β! Ισχύει επίσης η αρχή της αιτιοκρατίας, οι αιτίες δηλαδή καθορίζουν το αποτέλεσμα.

Μια αυτονόητη υπόθεση της κλασικής φυσικής είναι ότι υπάρχει δυνατότητα, με πολύ προσεκτικό σχεδιασμό των πειραμάτων, να καταστήσουμε εντελώς αμελητέα τη διαταραχή που προκαλεί ο ερευνητής με την ανάμειξή του στην πορεία των φυσικών φαινομένων. Η υπόθεση αυτή είναι απόλυτα δικαιολογημένη για φαινόμενα μεγάλης κλίμακας, αλλά παύει να είναι για φαινόμενα του μικροκόσμου και για τα σωματίδια που συγκροτούν τα άτομα (τουλάχιστο με τις σημερινές μεθόδους έρευνάς τους) .

Η δεύτερη ερμηνεία ή θετικιστική ερμηνεία (Σχολή της Κοπεγχάγης, Bohr, Heisenberg, von Newmann, Jordan κ.ά.) αμφισβήτησε την ισχύ της ρεαλιστικής ερμηνείας για την αιτιότητα στο χώρο του μικρόκοσμου καθώς υποστήριξαν ότι δεν ισχύει στο μικρόκοσμο και αμφισβήτησε επίσης και την ισχύ της τοπικότητας.

Σύμφωνα δηλαδή με τον Bohr η κβαντική θεωρία δεν περιγράφει τον μικρόκοσμο καθ’ εαυτόν, αλλά όπως αυτός εμφανίζεται κατά την παρατήρηση, δηλαδή μέσα από την αλληλεπίδραση του με τις συσκευές μέτρησης και τον παρατηρητή.

Μέσα στα πλαίσια της θετικιστικής ερμηνείας αναπτύχθηκε η μηχανική των μητρών, από τον Heisenberg. Οι θετικιστές πιστεύουν ότι μεγέθη που δεν μπορούν να παρατηρηθούν δεν υπάρχουν. Έτσι η μηχανική των μητρών δεν περιέγραφε τροχιές και άλλα "υλικά" χαρακτηριστικά των μικροσωματίων, αλλά μόνο παρατηρήσιμα μεγέθη: Ενεργειακές στάθμες, πιθανότητες παρουσίας και πιθανότητες μετάπτωσης.

Για σύγκριση η εξίσωση του Schroedinger η οποία περιγράφει την πιθανότητα εύρεσης ενός σωματιδίου σε κάποια περιοχή του χώρου μια δεδομένη χρονική στιγμή, συνεχίζει τη ρεαλιστική παράδοση της κλασσικής φυσικής, ενώ η εξίσωση μητρών του Heisenberg θεμελιώνεται σε θετικιστικά αξιώματα και αντι-αιτιοκρατικές αντιλήψεις. Κι ας βγάζουν παρόμοια αποτελέσματα.

Ωστόσο, οι φιλόσοφοι ακόμη επιχειρηματολογούν για τη σχετική αξία των δύο αυτών εκδοχών.

H δημιουργία της κβαντικής θεωρίας, η οποία περιγράφει τη συμπεριφορά «μικροσκοπικών» φυσικών συστημάτων, δημιούργησε ένα καινούργιο και απροσδόκητο μπέρδεμα στα ερωτήματα που αφορούσαν στη φύση της σχέσης που συνδέει την επιστήμη με την πραγματικότητα. Αιτία γι’ αυτό ήταν η ανακάλυψη του γεγονότος ότι τα υποατομικά σωμάτια, για παράδειγμα τα ηλεκτρόνια, υπό ορισμένες συνθήκες συμπεριφέρονται ως σωμάτια και υπό άλλες ως κύματα. 

Είναι εξαιρετικά δύσκολο να φανταστούμε πώς είναι δυνατό να συμβαίνει κάτι τέτοιο, μια και ελάχιστα πράγματα είναι πιο ανόμοια απ’ ότι ένα σωμάτιο κι ένα κύμα. Τα σωμάτια είναι «εντοπισμένα» αντικείμενα, ενώ τα κύματα «εκτείνονται» στο χώρο. Ευτυχώς που η συμπεριφορά τέτοιων σωματίων δεν είναι εντελώς αυθαίρετη, οπότε είναι δυνατό να προβλέψει κανείς πότε κάποιο απ’ αυτά πρόκειται να συμπεριφερθεί ως σωμάτιο και πότε ως κύμα. 

Χονδρικά, αν κάποιος παρατηρεί ένα ηλεκτρόνιο με κάποιου είδους μετρητική διάταξη και «βλέπει» ένα σωμάτιο, χρησιμοποιώντας άλλου είδους μετρητική διάταξη θα «βλέπει» ένα κύμα. Πράγματι, οι φυσικοί επινόησαν ένα εξαιρετικά εκλεπτυσμένο μαθηματικό φορμαλισμό, ο οποίος τους δίνει τη δυνατότητα να προβλέψουν — εντός ευρέων ορίων — πώς πρόκειται να συμπεριφερθεί ένα ηλεκτρόνιο ή άλλο υποατομικό σωμάτιο το οποίο βρίσκεται σε οποιαδήποτε δεδομένη κατάσταση. 

Ωστόσο, το βασικό ερώτημα εξακολουθεί να υφίσταται: πώς είναι δυνατό ενός μόνο τύπου αντικείμενο να συμπεριφέρεται τόσο ως σωμάτιο όσο και ως κύμα;

Οι πρωτοπόροι της κβαντικής θεωρίας
 παραδέχονταν την ύπαρξη αυτού του διλήμματος, και οι σχετικές συζητήσεις τους διαμόρφωσαν αυτό που μέχρι σήμερα θεωρείται ως η «επίσημη» ερμηνεία της. H ερμηνεία αυτή, η οποία επιχειρεί να αναιρέσει το οφθαλμοφανές παράδοξο που πηγάζει από το δυϊσμό κυμάτων και σωματίων, είναι γνωστή ως «ερμηνεία της σχολής της Κοπεγχάγης». 

O πιο συνεπής εκπρόσωπος της «σχολής» ο Niels Bohr, ο οποίος διηύθυνε και το Ινστιτούτο Φυσικής στην Κοπεγχάγη — από εδώ πηγάζει το όνομα ερμηνεία της σχολής Κοπεγχάγης. Μεγάλο μέρος της ερμηνείας αυτής είναι «σκοτεινό» και δυσνόητο, και ίσως απαιτούνται κάποιες πρόσθετες εξηγήσεις αφού, ακόμη κι αν εξακολουθεί να παραμένει η «επίσημη» άποψη, η ερμηνεία της σχολής της Κοπεγχάγης συχνά διαστρεβλώνεται.

Το βασικό χαρακτηριστικό της ερμηνείας της σχολής της Κοπεγχάγης έγκειται στην παραδοχή ότι η επιστήμη είναι μια δημόσια δραστηριότητα στην οποία συμμετέχει ολόκληρη η επιστημονική κοινότητα. Προκειμένου να επικοινωνήσουν οι επιστήμονες μεταξύ τους είναι αναγκαίο να χρησιμοποιείται μια κοινή επιστημονική ‘γλώσσα’ στην «καθημερινή» της μορφή. Μόνο έτσι είναι δυνατό να διασφαλιστεί η επικοινωνία μεταξύ των μελών της επιστημονικής κοινότητας. 

Σύμφωνα με το Μπορ, οι έννοιες της Κλασικής Φυσικής, συμπεριλαμβανομένων, ενδεχομένως, και εκείνων του «κύματος» και του «σωματίου», συνιστούν απλώς την τεχνική τελειοποίηση της κοινής αυτής γλώσσας και, κατά συνέπεια^ αποτελούν κάποιο είδος σημείων αναφοράς: αποτελούν δικά μας πρότυπα αναφοράς, ενώ κάθε τι άλλο πρέπει να μετρηθεί. Έτσι είμαστε υποχρεωμένοι να χρησιμοποιούμε τη γλώσσα της Κλασικής Φυσικής ακόμη και για αντικείμενα τα οποία ξεφεύγουν από το πλαίσιο της αυστηρά κλασικής φυσικής ερμηνείας.

H Κλασική Φυσική δεν είναι δυνατό να εφαρμοστεί για την περίπτωση υποατομικών αντικειμένων, λόγου χάρη των ηλεκτρονίων, ακόμη και σαν μακρινή προσέγγιση, και έτσι αυτά παρουσιάζονται να μην έχουν αρκετά σαφή περιγραφή. Από το σημείο αυτό πηγάζει και η δυσκολία που έχουμε να κατανοήσουμε την πραγματική φύση τους. O Μπορ δεν ήταν και πολύ κατηγορηματικός γύρω από το πώς πρέπει κανείς να αντιμετωπίζει τα αντικείμενα αυτά σαν να υπάρχουν ανεξάρτητα από το αν έχουν ποτέ παρατηρηθεί. 

To πιο πολύ, τα ηλεκτρόνια, με όλες τις ιδιότητες που τυχόν διαθέτουν, να είναι «νοούμενα» (όρος του Καντ), δηλαδή μη δυνάμενα να γνωσθούν ως «αυθύπαρκτα αντικείμενα». Εξάλλου, ίσως ο Μπορ να πίστευε ότι η έννοια της πραγματικής «ύπαρξης» ενός μη παρατηρημένου ηλεκτρονίου στερείται παντελώς νοήματος. Είναι πολύ πιθανό να θεωρούσε ότι μια λέξη σαν την «πραγματικότητα» απλώς δεν είχε θέση σ’ ένα τέτοιο μη-κλασικό γενικό πλαίσιο.

Οι κριτικές της ερμηνείας της Κοπεγχάγης διαφέρουν, ανάλογα με το νόημα που δίνει κανείς σ’ αυτή τη συγκεκριμένη ιδέα του Μπορ. Αν θεωρηθεί ότι δεν είναι δυνατό να δοθεί η περιγραφή των ηλεκτρονίων όπως αυτά υπάρχουν στη φύση, τότε πώς κάτι τέτοιο γίνεται εφικτό στην επιστήμη της Φυσικής; 

H απάντηση που έδωσε η σχολή της Κοπεγχάγης στο ερώτημα αυτό είναι η εξής: αν περιορίσουμε την προσοχή μας στα μακροσκοπικά όργανα που χρησιμοποιούμε για να παρατηρήσουμε ηλεκτρόνια, τότε δεν υπάρχει πραγματικό πρόβλημα: η Κλασική Φυσική «εφαρμόζεται» για τέτοιου είδους μετρητικά όργανα με προσέγγιση τόσο ικανοποιητική, ώστε να εγγυάται τη δυνατότητα μιας πραγματικά σαφούς επικοινωνίας. 

Επιπλέον, έτσι απομακρύνεται και το παράδοξο του κυματοσωματιακού δυϊσμού, αφού η κυματική και η σωματιακή συμπεριφορά των ηλεκτρονίων ποτέ δεν θα εμφανίζονται ταυτοχρόνως, αλλά καθεμιά θα διαπιστώνεται με χρήση διαφορετικών οργάνων μέτρησης. Κατά συνέπεια, για τη σχολή της Κοπεγχάγης, οι μετρητικές συσκευές και διατάξεις παίζουν ένα θεμελιώδη ρόλο που είναι αρκετά διαφορετικός από εκείνο των υποατομικών αντικειμένων τα οποία υποτίθεται ότι «παρατηρούν». 

Επιπλέον, επιτελούν το έργο αυτό παρά το γεγονός ότι και τα όργανα αυτά συντίθενται από στοιχειώδη αντικείμενα των οποίων η συμπεριφορά περιγράφεται από τους νόμους της κβαντικής θεωρίας. Πράγματι, δεν υπάρχει κάτι το αντιφατικό στην ιδέα αυτή από τη σκοπιά της σχολής της Κοπεγχάγης.

Φαίνεται ότι, για το Μπορ, αυτό που κάνει ένα όργανο μέτρησης «ξεχωριστό» δεν έχει να κάνει με εγγενείς διαφορές του από άλλους τύπους φυσικών συστημάτων αλλά, μάλλον, επειδή μπορεί να «εφαρμοστεί» σ’ αυτό από την επιστημονική κοινότητα μια περιγραφή από τη σκοπιά της Κλασικής Φυσικής. 

Άμεση πληροφορία είναι πιθανή μόνο στην περίπτωση που μια τέτοια περιγραφή είναι επιτυχής. Επειδή τα όργανα μέτρησης είναι «μεγάλα», κατά κάποιο τρόπο, οι έννοιες της Κλασικής Φυσικής θα «δουλεύουν» με πολύ καλή προσέγγιση για τέτοιου είδους συστήματα, κι έτσι θα επιτυγχάνεται μια αρκετά καλή περιγραφή για πρακτικούς σκοπούς.

Αν, πάλι, επιλέξουμε να χρησιμοποιήσουμε
 τον όρο του Καντ, μπορεί να ειπωθεί ότι οι παρατηρήσεις που παίρνουμε χρησιμοποιώντας τέτοιου είδους συσκευές μέτρησης, όταν «ερμηνευτούν» από τη σκοπιά της Κλασικής Φυσικής, συνιστούν «φαινόμενα» —μια λέξη την οποία όντως χρησιμοποίησε ως ένα σημείο ο Μπορ με παρόμοια έννοια προς εκείνη που εμφανίζεται στη φιλοσοφία του Καντ (αν και υπάρχουν διαφορές). Αυτή η έννοια του «φαινομένου» παίζει κεντρικό ρόλο στην ερμηνεία της σχολής της Κοπεγχάγης. 

Επιπλέον, επειδή τα φαινόμενα σε τελευταία ανάλυση προσδιορίζονται μόνο ως προς μια ανθρώπινη κοινότητα χρηστών κοινής γλώσσας (και όχι ως προς έναν αντικειμενικό «εξωτερικό κόσμο»), η ερμηνεία της σχολής της Κοπεγχάγης είναι, βασικά, μια φιλοσοφία «ανθρωποκεντρική»· και αυτό δημιουργεί δυσκολίες στη συμφιλίωση της με τη «ρεαλιστική» θεώρηση της επιστήμης την οποία περιγράψαμε πριν.
Σαν συμπέρασμα

Σύμφωνα λοιπόν με τις απόψεις της κβαντομηχανικής, η κατάσταση ενός μικροσωματίου «περιγράφεται» προσεγγιστικά από μια κυματοσυνάρτηση, της οποίας η λύση είναι μια συνάρτηση πιθανότητας, που δεν περιγράφει μια συγκεκριμένη, μοναδική κατάσταση, αλλά ένα ολόκληρο σύνολο δυνατοτήτων (πιθανοτήτων), δηλαδή ένα σύνολο δυνατών καταστάσεων. Είναι, επίσης, γενικά αποδεκτή η θέση ότι η κατάσταση του κβαντικού σωματιδίου είναι «οργανικά» δεμένη με το περιβάλλον.

Ανάλογα όμως με τη σχολή σκέψης 
­ τη θετικιστική και ιντετερμινιστική ερμηνεία της Σχολής της Κοπεγχάγης ή την πιο ρεαλιστική και αιτιοκρατική ερμηνεία, ­ το σωματίδιο θεωρείται ότι αλληλεπιδρά είτε μόνο με το μετρητικό όργανο και το μακροφυσικό του γενικά περιβάλλον είτε συγχρόνως και με το μικροφυσικό του περιβάλλον και κάποιες κρυμμένες μεταβλητές του συστήματος (που ονομάστηκαν και λανθάνουσες παράμετροι).

Η ύπαρξη της συσκευής μέτρησης είναι επομένως, σε κάθε περίπτωση, καθοριστική. Με την ύπαρξη του μετρητικού οργάνου, κατά την παρατήρηση, μεταβάλλεται η κυματοσυνάρτηση με ασυνεχή τρόπο (κβαντικό άλμα), και από όλες τις δυνατές καταστάσεις προκύπτει τελικά μια μοναδική πραγματικότητα (η κίνηση π.χ. του σωματιδίου, που τελικά καταγράφεται από το όργανο). 

Από το «δυνατό» προκύπτει δηλαδή το «πραγματικό». Οι φυσικοί μιλούν στην περίπτωση αυτή για την κατάρρευση της κυματοσυνάρτησης.

Αυτή η περιγραφή της κβαντικής μέτρησης, με την ταυτόχρονη εξέλιξη του φαινομένου και την ανάδυση της πραγματικότητας μέσα από τη δυνατότητα (πιθανότητα), παραπέμπει, όπως επισημαίνει ο θεωρητικός φυσικός Βέρνερ Χάιζενμπεργκ που θεμελίωσε την κβαντομηχανική του με βάση το θετικιστικό αξίωμα ότι υπάρχει μόνο αυτό που παρατηρείται

Διαβάστε και το άρθρο:

Ντετερμινισμός, κβαντομηχανική και κλασσική φυσική

Πηγές για το άρθρο
1. Η Σοφία της Επιστήμης, Hanbury Brown
2, Οι γενιές των κβάντων, Helge Kragh
4. Φυσική και Φιλοσοφία, Werner Heinseberg
5. Πέρα από το Ταό και Φυσική, T.Axon
6. Κβαντομηχανική πλάνη ή πραγματικότητα;, Alastair Rae
7. Η φιλοσοφία της φυσικής, Στράτος Θεοδοσίου
8. Φιλοσοφία και Νέα Φυσική, Jonathan Powers
9. Ταό και Φυσική, Φρίζοφ Κάπρα
10. Η διαμάχη για την κβαντική θεωρία, Franco Selleri